In the reactor safety analysis process, it is important to obtain an accurate flow field inside the pressure vessel. Taking the small pressurized water reactor as the research object, the computational fluid dynamics (CFD) method was used to calculate and analyze the internal flow field of the reactor pressure vessel, and the fuel assembly flow distribution and the lower head mixing characteristics were obtained. The results show that the maximum flow distribution coefficient of the fuel assembly is 1.032, the minimum value is 0.934, and the overall flow distribution is characterized by “large in the middle and small in the edge” under the high-speed symmetrical inlet condition of the two pumps. The flow vortex of the lower head is enhanced, and the uneven distribution of the flow distribution of the fuel assembly is increased, under the high-speed asymmetric inlet condition of the pump. The minimum mixing factor of the coolant flow at the core inlet was calculated to be 0.022 due to the insufficient mixing characteristics of the lower head.