Experimental Study on Critical Heat Flux of Vertical Square Channel with Single Rod
-
摘要: 采用R134a作为流体工质,对单棒垂直方形通道临界热流密度(CHF)进行了实验研究。流道横截面为19 mm×19 mm的方形通道,内置外径为9.5 mm的单根加热棒,用来模拟压水堆中典型栅元通道。实验工况通过流体模化方法覆盖了压水堆典型运行工况。实验结果表明,R134a在方形通道内的CHF参数趋势与圆管中水的CHF参数趋势相同,R134a可以替代水作为模化工质;通过对圆管Bowring关系式和Katto & Ohno关系式进行冷壁因子修正,可用于预测带有冷壁的方形通道的CHF;Katto的流体模化方法适用于带有冷壁的方形通道。Abstract: The critical heat flux (CHF) of vertical square channel with single rod is experimentally studied by using R134a as the working fluid. A square channel with a flow channel cross section of 19 mm×19 mm and a single heating rod with an outer diameter of 9.5 mm are used to simulate the typical cell channel in PWR. The experimental conditions cover the typical operating conditions of PWR by fluid modeling method. The experimental results show that the CHF parameter trend of R134a in the square channel is the same as that of water in the circular tube, and R134a can replace water as a modeling fluid; After corrected with cold wall factor, the circular tube Bowring relation and Katto & Ohno relation can be used to predict CHF in square channel with cold wall; Katto’s fluid modeling method is suitable for square channel with cold wall.
-
Key words:
- Critical heat flux(CHF) /
- Square channel /
- Experimental study
-
表 1 Katto模化方法
Table 1. Modeling Method of Katto
类型 准则 几何相似 ${\left( {\dfrac{{{L_{\rm{h}}}}}{{{D_{\rm{h}}}}}} \right)_{{\rm{R134a}}}} = {\left( {\dfrac{{{L_{\rm{h}}}}}{{{D_{\rm{h}}}}}} \right)_{{\rm{Water}}}}$ 水力学相似 ${\left( {\dfrac{{{\rho _{\rm{f}}}}}{{{\rho _{\rm{g}}}}}} \right)_{{\rm{R134a}}}} = {\left( {\dfrac{{{\rho _{\rm{f}}}}}{{{\rho _{\rm{g}}}}}} \right)_{{\rm{Water}}}}$ 热力学相似 ${\left( {\dfrac{{\Delta {h_{{\rm{in}}}}}}{{{h_{{\rm{fg}}}}}}} \right)_{{\rm{R134a}}}} = {\left( {\dfrac{{\Delta {h_{{\rm{in}}}}}}{{{h_{{\rm{fg}}}}}}} \right)_{{\rm{Water}}}}$ 韦伯数(We)相同 ${\left( {\dfrac{ {G\sqrt D } }{ {\sqrt { {\rho _{_{\rm{f} } } }\sigma } } } } \right)_{ {\rm{R134a} } } } = {\left( {\dfrac{ {G\sqrt D } }{ {\sqrt { {\rho_{ _{\rm{f} }} }\sigma } } } } \right)_{ {\rm{Water} } } }$ Lh—加热高度;Dh—热当量直径;Δhin—入口焓升;hfg—汽化潜热;G—质量流速;σ—表面张力;ρf和ρg—液相和气相密度;D—管道直径 表 2 实验工况
Table 2. Experimental Conditions
参数 R134a 水 压力/MPa 1.8、2.1、2.7、4 10.9、12.5、14.1、15.6 质量流速/[kg· (m2·s)−1] 600~2100 800~3000 入口过冷度(ΔTin)/℃ 10~40 利用Δhin/hfg相等模化 表 3 本实验的不确定度
Table 3. Uncertainty of Experiment
参数 不确定度/% 长度、直径、厚度 ±0.1、±0.5、±3.0 压力 ±0.7 温度 ±1.3 质量流速 ±1.7 功率 ±2.2 热流密度 ±5.1 -
[1] 徐济鋆, 贾斗南, 沸腾传热和汽液两相流[M]. 北京: 中国原子能出版社, 2001: 300-301. [2] KATTO Y, OHNO H. An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes[J]. International Journal of Heat and Mass Transfer, 1984(27): 1641-1648. [3] BOWRING R W. A simple but accurate round tube, uniform heat flux, dryout correlation over pressure range 0.7-17 MN/m2 (100-2500 psia): AEEW-R-789[R]. Winfrith, England: UK Atomic Energy Authority, 1972. [4] HALL D D, MUDAWAR I. Critical heat flux for water flow in tubes-II subcooled CHF correlations[J]. International Journal of Heat and Mass Transfer, 2000(43): 2606-2640. [5] ALEKSEEV G V, ZENKEVITCH B A, PESKOV O L, et al. Burn-out heat fluxes under forced water flow[C]. England: Third United Nations International Conference on the Peaceful Uses of Atomic Energy, 1964. [6] LEE K L, BANG I C, CHANG S H. The characteristic and visualization of critical flux of R-134a flowing in a vertical annular geometry with spacer grids[J]. International Journal of Heat and Mass Transfer, 2008, 51(1-2): 91-103. doi: 10.1016/j.ijheatmasstransfer.2007.04.024 [7] LIU Y, LIU W, SHAN J Q, et al. A mechanistic bubble crowding model for predicting critical heat flux in subchannels of a bundle[J]. Annals of Nuclear Energy, 2020(137): 107085. [8] CHENG X, ERBACHER F J, MULLER U. Critical heat flux in uniformly heated vertical tubes[J]. International Journal of Heat and Mass Transfer, 1997(40): 2929-2939. [9] PIORO I L, GROENEVELD D C, CHENG S C, et al. Comparison of CHF measurements in R-134a cooled tubes and the water CHF look-up table[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 73-88. doi: 10.1016/S0017-9310(00)00093-4 [10] TONG L S. An evaluation of the departure from nucleate boiling in bundles of reactor fuel rods[J]. Nuclear Science and Engineering, 1986, 33(1): 7-15.