高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压水堆棒束多通道流场稀疏数据深度学习求解技术研究

钱浩 陈广亮 刘东 于洋 姜宏伟 殷新立 杨玉诚

钱浩, 陈广亮, 刘东, 于洋, 姜宏伟, 殷新立, 杨玉诚. 压水堆棒束多通道流场稀疏数据深度学习求解技术研究[J]. 核动力工程, 2025, 46(2): 81-89. doi: 10.13832/j.jnpe.2024.080039
引用本文: 钱浩, 陈广亮, 刘东, 于洋, 姜宏伟, 殷新立, 杨玉诚. 压水堆棒束多通道流场稀疏数据深度学习求解技术研究[J]. 核动力工程, 2025, 46(2): 81-89. doi: 10.13832/j.jnpe.2024.080039
Qian Hao, Chen Guangliang, Liu Dong, Yu Yang, Jiang Hongwei, Yin Xinli, Yang Yucheng. Deep Learning Solution Technology for Sparse Data of Multi-Channel Flow Field of PWR Rod Bundle[J]. Nuclear Power Engineering, 2025, 46(2): 81-89. doi: 10.13832/j.jnpe.2024.080039
Citation: Qian Hao, Chen Guangliang, Liu Dong, Yu Yang, Jiang Hongwei, Yin Xinli, Yang Yucheng. Deep Learning Solution Technology for Sparse Data of Multi-Channel Flow Field of PWR Rod Bundle[J]. Nuclear Power Engineering, 2025, 46(2): 81-89. doi: 10.13832/j.jnpe.2024.080039

压水堆棒束多通道流场稀疏数据深度学习求解技术研究

doi: 10.13832/j.jnpe.2024.080039
基金项目: 中核集团领创科研项目(CNNC-LCKY-2024-053);四川省揭榜挂帅项目(2023YFG0373);部委稳定支持基础科研项目(WDZC-2023-05-03-05);四川省自然科学基金(青年科学基金)项目(2023NSFSC1321)
详细信息
    作者简介:

    钱 浩(1998—),男,博士研究生,现主要从事人工智能与反应堆热工水力的研究,E-mail: haoqian@hrbeu.edu.cn

    通讯作者:

    陈广亮,E-mail: chenguangliang@hrbeu.edu.cn

  • 中图分类号: TL334

Deep Learning Solution Technology for Sparse Data of Multi-Channel Flow Field of PWR Rod Bundle

  • 摘要: 反应堆堆芯典型工况雷诺数高达105,冷却剂流动具有显著的非线性,实际流动边界及状态与理想流动方程存在一定的匹配性偏差,会导致求解过程中数据与控制方程的约束相冲突,彼此制约,导致求解收敛困难。为解决该问题,本文研发了一种基于深度学习的稀疏数据求解方法,通过设计不匹配性自适应调节方案,在控制方程中引入自适应调节因子,动态修正理想模型,克服因数据与方程不一致所引发的收敛障碍及精度不足等问题。在此技术基础上,进一步探讨了在小样本数据条件下的流场求解策略,设计了均匀配点、基于速度梯度配点、混合配点策略,旨在通过优化样本点的空间分布,提升流场求解的整体精度。研究结果表明,在3种策略中,均匀配点策略能够更全面地覆盖流场的整体特性,表现出最佳的优化效果,达到决定系数(R2)大于0.95、均方误差(MSE)在10−4至10−3量级的精度;且在仅采用60个小样本数据配点下(占原始数据点的7.8%)。本文所提出的方法也能有效实现高精度流场求解,为稀疏数据条件下求解压水堆堆芯棒束多通道流场提供了一种高效且适用的技术方案。

     

  • 图  1  物理信息神经网络模型

    PDE—物理约束;σ—非线性激活函数

    Figure  1.  Model of Physics-Informed Neural Network

    图  2  用于流场求解的配点

    Figure  2.  Collocation Point for Flow Field Solution

    图  3  损失分布对比

    Figure  3.  Comparison of Loss Distribution

    图  4  调节因子分布

    Figure  4.  Distribution of Adjustment Factor

    图  5  有无调节因子结果对比

    u, v分别为式(1)中uxy方向的速度分量

    Figure  5.  Comparison of Results with and without Adjustment Factor

    图  6  数据配点选取

    Figure  6.  Selection of Data Points

    图  7  交混翼下游2 mm处流场预测结果对比

    Figure  7.  Comparison of Prediction Results of Flow Field at 2 mm Downstream of Mixing Vane

    图  8  交混翼下游2 mm处预测效果评估

    Figure  8.  Evaluation of Prediction Effect at 2 mm Downstream of Mixing Vane

    图  9  交混翼下游200 mm处流场预测结果对比

    Figure  9.  Comparison of Prediction Results of Flow Field at 200 mm Downstream of Mixing Vane

    图  10  交混翼下游200 mm处预测效果评估

    Figure  10.  Evaluation of Prediction Effect at 200 mm Downstream of Mixing Vane

  • [1] CHEN G L, WANG J J, ZHANG Z J, et al. Distributed-parallel CFD computation for all fuel assemblies in PWR core[J]. Annals of Nuclear Energy, 2020, 141: 107340. doi: 10.1016/j.anucene.2020.107340
    [2] QU W H, XIONG J B. High-fidelity PIV measurements of turbulent flow in reactor pressure vessel assisted by high-precision matched index of refraction technique[J]. Nuclear Engineering and Design, 2024, 420: 112997. doi: 10.1016/j.nucengdes.2024.112997
    [3] QIAN H, CHEN G L, LI L, et al. Development of supporting platform for the fine flow characteristics of reactor core[J]. Nuclear Engineering and Technology, 2024, 56(5): 1687-1697. doi: 10.1016/j.net.2023.12.023
    [4] ZHANG C, JU H R, ZHANG D L, et al. PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly[J]. Nuclear Engineering and Technology, 2020, 52(5): 897-907. doi: 10.1016/j.net.2019.10.013
    [5] HAN B, ZHU X L, YANG B W, et al. Review of the representative development history on rod bundle mixing coefficient used in subchannel analysis code of PWR[J]. Progress in Nuclear Energy, 2024, 170: 105113. doi: 10.1016/j.pnucene.2024.105113
    [6] ZHANG L X, CHEN G L, TIAN Z F, et al. Advanced CFD modeling of rod bundle channels with integrated porous media and momentum source schemes[J]. International Communications in Heat and Mass Transfer, 2024, 155: 107547. doi: 10.1016/j.icheatmasstransfer.2024.107547
    [7] CHEN G L, QIAN H, LI L, Lei L, et al. Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core[J]. Nuclear Engineering and Technology, 2021, 53(10): 3171-3181. doi: 10.1016/j.net.2021.04.008
    [8] 张青山. 有限长平板分离再附流动非定常特性的PIV实验研究——基于POD与DMD模态分解的旋涡动力学分析[D]. 上海: 上海交通大学,2015.
    [9] CAO H S, SUN P W, ZHAO L. PCA-SVM method with sliding window for online fault diagnosis of a small pressurized water reactor[J]. Annals of Nuclear Energy, 2022, 171: 109036. doi: 10.1016/j.anucene.2022.109036
    [10] LI W H, LI J G, YAO J F, et al. Mode decomposition of core dynamics transients using higher-order DMD method[J]. Nuclear Engineering and Design, 2024, 427: 113417. doi: 10.1016/j.nucengdes.2024.113417
    [11] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51(1): 357-377. doi: 10.1146/annurev-fluid-010518-040547
    [12] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. doi: 10.1038/s42254-021-00314-5
    [13] RAISSI M, PERDIKARIS P, KARNIADAKIS E G. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [14] 刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
    [15] WANG S P, KARNIADAKIS G E. GMC-PINNs: a new general Monte Carlo PINNs method for solving fractional partial differential equations on irregular domains[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 429: 117189. doi: 10.1016/j.cma.2024.117189
    [16] KAROUTA Z, GU C Y, SCHOELIN B. 3-D flow analyses for design of nuclear fuel spacer[C]//Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-hydraulics. La Grange Park: American Nuclear Society, 1995.
    [17] NAVARRO M A, SANTOS A A C. Evaluation of a numeric procedure for flow simulation of a 5 × 5 PWR rod bundle with a mixing vane spacer[J]. Progress in Nuclear Energy, 2011, 53(8): 1190-1196. doi: 10.1016/j.pnucene.2011.08.002
    [18] CHEN G L, ZHANG Z J, TIAN Z F, et al. Challenge analysis and schemes design for the CFD simulation of PWR[J]. Science and Technology of Nuclear Installations, 2017, 2017: 5695809.
  • 加载中
图(10)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 录用日期:  2025-01-17
  • 修回日期:  2024-10-11
  • 网络出版日期:  2025-01-15
  • 刊出日期:  2025-04-02

目录

    /

    返回文章
    返回