[1] |
CHEN G L, WANG J J, ZHANG Z J, et al. Distributed-parallel CFD computation for all fuel assemblies in PWR core[J]. Annals of Nuclear Energy, 2020, 141: 107340. doi: 10.1016/j.anucene.2020.107340
|
[2] |
QU W H, XIONG J B. High-fidelity PIV measurements of turbulent flow in reactor pressure vessel assisted by high-precision matched index of refraction technique[J]. Nuclear Engineering and Design, 2024, 420: 112997. doi: 10.1016/j.nucengdes.2024.112997
|
[3] |
QIAN H, CHEN G L, LI L, et al. Development of supporting platform for the fine flow characteristics of reactor core[J]. Nuclear Engineering and Technology, 2024, 56(5): 1687-1697. doi: 10.1016/j.net.2023.12.023
|
[4] |
ZHANG C, JU H R, ZHANG D L, et al. PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly[J]. Nuclear Engineering and Technology, 2020, 52(5): 897-907. doi: 10.1016/j.net.2019.10.013
|
[5] |
HAN B, ZHU X L, YANG B W, et al. Review of the representative development history on rod bundle mixing coefficient used in subchannel analysis code of PWR[J]. Progress in Nuclear Energy, 2024, 170: 105113. doi: 10.1016/j.pnucene.2024.105113
|
[6] |
ZHANG L X, CHEN G L, TIAN Z F, et al. Advanced CFD modeling of rod bundle channels with integrated porous media and momentum source schemes[J]. International Communications in Heat and Mass Transfer, 2024, 155: 107547. doi: 10.1016/j.icheatmasstransfer.2024.107547
|
[7] |
CHEN G L, QIAN H, LI L, Lei L, et al. Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core[J]. Nuclear Engineering and Technology, 2021, 53(10): 3171-3181. doi: 10.1016/j.net.2021.04.008
|
[8] |
张青山. 有限长平板分离再附流动非定常特性的PIV实验研究——基于POD与DMD模态分解的旋涡动力学分析[D]. 上海: 上海交通大学,2015.
|
[9] |
CAO H S, SUN P W, ZHAO L. PCA-SVM method with sliding window for online fault diagnosis of a small pressurized water reactor[J]. Annals of Nuclear Energy, 2022, 171: 109036. doi: 10.1016/j.anucene.2022.109036
|
[10] |
LI W H, LI J G, YAO J F, et al. Mode decomposition of core dynamics transients using higher-order DMD method[J]. Nuclear Engineering and Design, 2024, 427: 113417. doi: 10.1016/j.nucengdes.2024.113417
|
[11] |
DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51(1): 357-377. doi: 10.1146/annurev-fluid-010518-040547
|
[12] |
KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. doi: 10.1038/s42254-021-00314-5
|
[13] |
RAISSI M, PERDIKARIS P, KARNIADAKIS E G. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[14] |
刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
|
[15] |
WANG S P, KARNIADAKIS G E. GMC-PINNs: a new general Monte Carlo PINNs method for solving fractional partial differential equations on irregular domains[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 429: 117189. doi: 10.1016/j.cma.2024.117189
|
[16] |
KAROUTA Z, GU C Y, SCHOELIN B. 3-D flow analyses for design of nuclear fuel spacer[C]//Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-hydraulics. La Grange Park: American Nuclear Society, 1995.
|
[17] |
NAVARRO M A, SANTOS A A C. Evaluation of a numeric procedure for flow simulation of a 5 × 5 PWR rod bundle with a mixing vane spacer[J]. Progress in Nuclear Energy, 2011, 53(8): 1190-1196. doi: 10.1016/j.pnucene.2011.08.002
|
[18] |
CHEN G L, ZHANG Z J, TIAN Z F, et al. Challenge analysis and schemes design for the CFD simulation of PWR[J]. Science and Technology of Nuclear Installations, 2017, 2017: 5695809.
|