Research on the Solution and Acceleration Algorithm of Source Iteration Method Based on PINN
-
摘要: 本文将基于物理驱动的人工智能方法和传统源迭代法结合,建立求解少群扩散方程的新型方法流程,并采用Anderson加速方法对迭代源项进行加速。二维多材料、三维单材料等例题的计算结果显示,基于物理驱动的物理信息神经网络(PINN)和传统源迭代法相结合,在保证计算精度的前提下可计算出连续中子注量率分布,采用Anderson加速可减少迭代次数,成功实现了少群中子扩散方程的正向求解,助推了人工智能算法在核领域的应用。
-
关键词:
- 物理信息神经网络(PINN) /
- Anderson加速 /
- 源迭代 /
- 中子扩散方程
Abstract: This paper integrates physics-driven artificial intelligence methods with the traditional source iteration method to establish a novel approach for solving the few-group diffusion equations, and employs the Anderson acceleration method to accelerate the iterative source term. The results of numerical examples such as two-dimensional multi material and three-dimensional single material show that the combination of physics-driven Physics-Informed Neural Networks (PINN) and traditional source iteration method can calculate the continuous neutron flux density distribution while ensuring calculation accuracy. The use of Anderson acceleration method can reduce the number of iteration, ssuccessfully achieving the forward solution of the few-group neutron diffusion equations. This advancement promotes the application of artificial intelligence algorithms in the nuclear field.-
Key words:
- PINN /
- Anderson acceleration /
- Source iteration /
- Neutron diffusion equation
-
表 1 计算区域材料特性
Table 1. Material Characteristics of Area
材料号 能群g D/cm $ {{\varSigma }}_{\mathrm{a}} $/cm−1 $ \vartheta {{\varSigma }}_{\mathrm{f}} $/cm−1 $ {{\varSigma }}_{1\to 2} $/cm−1 1 1 1.2550 0.008252 0.004602 0.02533 2 0.2110 0.100300 0.109100 2 1 1.2680 0.007181 0.004609 0.02767 2 0.1902 0.070470 0.086750 3 1 1.2590 0.008002 0.004663 0.02617 2 0.2091 0.083440 0.102100 4 1 1.2590 0.008002 0.004663 0.02617 2 0.2091 0.073324 0.102100 表 2 二维矩形几何多群两材料计算结果
Table 2. Multi-group Two-material Calculation Results for the 2D Rectangular Geometry
方法 $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_net $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_cor $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $相对误差 外迭代次数 MSE1 MSE2 Loss1 Loss2 MSIDL 0.8273 0.8378 0.0125 300 7.9462×10−4 6.1047×10−4 0.1912 0.0766 MSIDL+AA1 0.8299 0.0094 132 1.1700×10−2 2.7256×10−3 0.3626 0.0826 MSIDL+AA2 0.8294 0.0100 288 8.2466×10−4 4.7734×10−4 0.1376 0.0699 表 3 二维多材料计算结果
Table 3. Numerical Results of Two-dimensional Examples with Multi-material
方法 $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_net $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_cor $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $相对误差 外迭代次数 MSE1/10−3 MSE2/10−3 Loss1 Loss2 MSIDL 0.7854 0.7957 0.0129 29 4.6841 3.3315 0.3140 0.3340 MSIDL+AA1 0.8001 0.0055 16 5.0547 3.5475 0.3270 0.3526 MSIDL+AA2 0.7869 0.0111 18 4.1098 3.4594 0.3236 0.4118 表 4 三维单材料计算结果
Table 4. Numerical Results of Three-dimensional Examples with Single-material
方法 $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_net $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_cor $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $相对误差 外迭代次数 MSE1 MSE2 Loss1 Loss2 MSIDL 0.7808 0.8132 0.0398 48 0.0506 0.0100 0.0554 0.0219 MSIDL+AA1 0.7872 0.0320 33 0.0821 0.0159 0.0565 0.0241 MSIDL+AA2 0.7962 0.0209 44 0.0528 0.0107 0.0578 0.0201 表 5 高精度情况下二维两材料计算结果
Table 5. High-Accuracy Numerical Results of Two-dimensional Examples with Two-material
方法 $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_net $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_cor $ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $相对误差 外迭代次数 MSE1/10−4 MSE2/10−4 Loss1/10−3 Loss2/10−4 MSIDL 0.8451 0.8378 0.0087 153 9.5664 4.2012 1.3262 3.9391 MSIDL+AA1 0.8434 0.0067 127 8.1504 3.4201 0.9824 3.1263 -
[1] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045 [2] LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. doi: 10.1137/19M1274067 [3] LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229. doi: 10.1038/s42256-021-00302-5 [4] PANG G F, LU L, KARNIADAKIS G E. fPINNs: fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. doi: 10.1137/18M1229845 [5] YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913. doi: 10.1016/j.jcp.2020.109913 [6] JAGTAP A D, KHARAZMI E, KARNIADAKIS G E. Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 113028. doi: 10.1016/j.cma.2020.113028 [7] MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. doi: 10.1016/j.cma.2020.113250 [8] 刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8. [9] WANG J Y, PENG X J, CHEN Z, et al. Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement[J]. Annals of Nuclear Energy, 2022, 176: 109234. doi: 10.1016/j.anucene.2022.109234 [10] 刘东,唐雷,安萍,等. 核反应堆有效增殖系数深度学习直接搜索求解方法[J]. 核动力工程,2023, 44(5): 6-14. [11] ANDERSON D G. Iterative procedures for nonlinear integral equations[J]. Journal of the ACM (JACM), 1965, 12(4): 547-560. doi: 10.1145/321296.321305 [12] HAMILTON S, BERRILL M, CLARNO K, et al. An assessment of coupling algorithms for nuclear reactor core physics simulations[J]. Journal of Computational Physics, 2016, 311: 241-257. doi: 10.1016/j.jcp.2016.02.012 [13] PAWLOWSKI R P, SALINGER A G. On the performance of Anderson acceleration for multiphysics problems, SAND2015-2023C[R]. Albuquerque: Sandia National Lab. , 2015. [14] AN P, MA Y Q, XIAO P, et al. Development and validation of reactor nuclear design code CORCA-3D[J]. Nuclear Engineering and Technology, 2019, 51(7): 1721-1728. doi: 10.1016/j.net.2019.05.015 -