高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PINN的源迭代法求解及加速算法研究

江勇 安萍 刘东 于洋

江勇, 安萍, 刘东, 于洋. 基于PINN的源迭代法求解及加速算法研究[J]. 核动力工程, 2025, 46(2): 148-155. doi: 10.13832/j.jnpe.2024.090040
引用本文: 江勇, 安萍, 刘东, 于洋. 基于PINN的源迭代法求解及加速算法研究[J]. 核动力工程, 2025, 46(2): 148-155. doi: 10.13832/j.jnpe.2024.090040
Jiang Yong, An Ping, Liu Dong, Yu Yang. Research on the Solution and Acceleration Algorithm of Source Iteration Method Based on PINN[J]. Nuclear Power Engineering, 2025, 46(2): 148-155. doi: 10.13832/j.jnpe.2024.090040
Citation: Jiang Yong, An Ping, Liu Dong, Yu Yang. Research on the Solution and Acceleration Algorithm of Source Iteration Method Based on PINN[J]. Nuclear Power Engineering, 2025, 46(2): 148-155. doi: 10.13832/j.jnpe.2024.090040

基于PINN的源迭代法求解及加速算法研究

doi: 10.13832/j.jnpe.2024.090040
基金项目: 四川省自然科学基金(2023NSFSC0066、2023NSFSC1321);四川省揭榜挂帅行业共性技术攻关项目(23jBGOV0001);国家基础性科研院所基础科研稳定支持专项资助项目(WDZC-2023-05-03-05)
详细信息
    作者简介:

    江 勇(1998—),男,硕士,助理工程师,现主要从事反应堆智能数值计算与工业软件研究,E-mail: 2229602945@qq.com

    通讯作者:

    安 萍,E-mail: anpingwork@126.com

  • 中图分类号: TL32

Research on the Solution and Acceleration Algorithm of Source Iteration Method Based on PINN

  • 摘要: 本文将基于物理驱动的人工智能方法和传统源迭代法结合,建立求解少群扩散方程的新型方法流程,并采用Anderson加速方法对迭代源项进行加速。二维多材料、三维单材料等例题的计算结果显示,基于物理驱动的物理信息神经网络(PINN)和传统源迭代法相结合,在保证计算精度的前提下可计算出连续中子注量率分布,采用Anderson加速可减少迭代次数,成功实现了少群中子扩散方程的正向求解,助推了人工智能算法在核领域的应用。

     

  • 图  1  MSIDL方法流程图

    Figure  1.  Flowchart of the MSIDL Method

    图  2  材料区域几何描述

    Figure  2.  Geometric Description of Material Area

    图  3  源迭代与深度学习结合方法验证结果图

    Figure  3.  Verification Results of the Combination of Source Iteration and Deep Learning Method

    图  4  材料区域几何描述 cm

    Figure  4.  Geometric Description of Material Area

    图  5  源迭代与深度学习结合方法验证结果图

    Figure  5.  Verification Results of the Combination of Source Iteration and Deep Learning Method

    图  6  源迭代与深度学习结合方法验证结果图

    Figure  6.  Verification Results of the Combination of Source Iteration and Deep Learning Method

    表  1  计算区域材料特性

    Table  1.   Material Characteristics of Area

    材料号 能群g D/cm $ {{\varSigma }}_{\mathrm{a}} $/cm−1 $ \vartheta {{\varSigma }}_{\mathrm{f}} $/cm−1 $ {{\varSigma }}_{1\to 2} $/cm−1
    1 1 1.2550 0.008252 0.004602 0.02533
    2 0.2110 0.100300 0.109100
    2 1 1.2680 0.007181 0.004609 0.02767
    2 0.1902 0.070470 0.086750
    3 1 1.2590 0.008002 0.004663 0.02617
    2 0.2091 0.083440 0.102100
    4 1 1.2590 0.008002 0.004663 0.02617
    2 0.2091 0.073324 0.102100
    下载: 导出CSV

    表  2  二维矩形几何多群两材料计算结果

    Table  2.   Multi-group Two-material Calculation Results for the 2D Rectangular Geometry

    方法$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_net$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_cor$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $相对误差外迭代次数MSE1MSE2Loss1Loss2
    MSIDL0.82730.83780.01253007.9462×10−46.1047×10−40.19120.0766
    MSIDL+AA10.82990.00941321.1700×10−22.7256×10−30.36260.0826
    MSIDL+AA20.82940.01002888.2466×10−44.7734×10−40.13760.0699
    下载: 导出CSV

    表  3  二维多材料计算结果

    Table  3.   Numerical Results of Two-dimensional Examples with Multi-material

    方法$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_net$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_cor$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $相对误差外迭代次数MSE1/10−3MSE2/10−3Loss1Loss2
    MSIDL0.78540.79570.0129294.68413.33150.31400.3340
    MSIDL+AA10.80010.0055165.05473.54750.32700.3526
    MSIDL+AA20.78690.0111184.10983.45940.32360.4118
    下载: 导出CSV

    表  4  三维单材料计算结果

    Table  4.   Numerical Results of Three-dimensional Examples with Single-material

    方法$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_net$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_cor$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $相对误差外迭代次数MSE1MSE2Loss1Loss2
    MSIDL0.78080.81320.0398480.05060.01000.05540.0219
    MSIDL+AA10.78720.0320330.08210.01590.05650.0241
    MSIDL+AA20.79620.0209440.05280.01070.05780.0201
    下载: 导出CSV

    表  5  高精度情况下二维两材料计算结果

    Table  5.   High-Accuracy Numerical Results of Two-dimensional Examples with Two-material

    方法$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_net$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $_cor$ {k}_{\mathrm{e}\mathrm{f}\mathrm{f}} $相对误差外迭代次数MSE1/10−4MSE2/10−4Loss1/10−3Loss2/10−4
    MSIDL0.84510.83780.00871539.56644.20121.32623.9391
    MSIDL+AA10.84340.00671278.15043.42010.98243.1263
    下载: 导出CSV
  • [1] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [2] LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. doi: 10.1137/19M1274067
    [3] LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229. doi: 10.1038/s42256-021-00302-5
    [4] PANG G F, LU L, KARNIADAKIS G E. fPINNs: fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. doi: 10.1137/18M1229845
    [5] YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913. doi: 10.1016/j.jcp.2020.109913
    [6] JAGTAP A D, KHARAZMI E, KARNIADAKIS G E. Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 113028. doi: 10.1016/j.cma.2020.113028
    [7] MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. doi: 10.1016/j.cma.2020.113250
    [8] 刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
    [9] WANG J Y, PENG X J, CHEN Z, et al. Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement[J]. Annals of Nuclear Energy, 2022, 176: 109234. doi: 10.1016/j.anucene.2022.109234
    [10] 刘东,唐雷,安萍,等. 核反应堆有效增殖系数深度学习直接搜索求解方法[J]. 核动力工程,2023, 44(5): 6-14.
    [11] ANDERSON D G. Iterative procedures for nonlinear integral equations[J]. Journal of the ACM (JACM), 1965, 12(4): 547-560. doi: 10.1145/321296.321305
    [12] HAMILTON S, BERRILL M, CLARNO K, et al. An assessment of coupling algorithms for nuclear reactor core physics simulations[J]. Journal of Computational Physics, 2016, 311: 241-257. doi: 10.1016/j.jcp.2016.02.012
    [13] PAWLOWSKI R P, SALINGER A G. On the performance of Anderson acceleration for multiphysics problems, SAND2015-2023C[R]. Albuquerque: Sandia National Lab. , 2015.
    [14] AN P, MA Y Q, XIAO P, et al. Development and validation of reactor nuclear design code CORCA-3D[J]. Nuclear Engineering and Technology, 2019, 51(7): 1721-1728. doi: 10.1016/j.net.2019.05.015
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-16
  • 修回日期:  2024-12-22
  • 网络出版日期:  2025-01-15
  • 刊出日期:  2025-04-02

目录

    /

    返回文章
    返回