Advance Search
Volume 39 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
Ding Hao, Cai Qi, Zhang Yongfa, Jiang Lizhi, Wei ke. Reliability Analysis of Passive System Based on PSO Optimized Neural Network Response Surface Method[J]. Nuclear Power Engineering, 2018, 39(4): 101-106. doi: 10.13832/j.jnpe.2018.04.0101
Citation: Ding Hao, Cai Qi, Zhang Yongfa, Jiang Lizhi, Wei ke. Reliability Analysis of Passive System Based on PSO Optimized Neural Network Response Surface Method[J]. Nuclear Power Engineering, 2018, 39(4): 101-106. doi: 10.13832/j.jnpe.2018.04.0101

Reliability Analysis of Passive System Based on PSO Optimized Neural Network Response Surface Method

doi: 10.13832/j.jnpe.2018.04.0101
  • Publish Date: 2018-08-15
  • On the basis of reliability analysis mathematical model, combined with the operating data from an experimental facility and improved thermal-hydraulic codes, the uncertainty of input parameters is identified. Compared with the accuracy and the goodness of different Neural Network Response Surface methods, the one optimized with PSO is analyzed by classification accuracy. The results show that PSO response surface has relatively better fitting performance and can evaluate the reliability of the passive system accurately.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (178) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return