Advance Search
Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Ma Dongliang, Zhou Tao, Huang Yanping. Research on Judgment of Supercritical Water Heat Transfer Deterioration Based on Machine Learning[J]. Nuclear Power Engineering, 2021, 42(4): 91-95. doi: 10.13832/j.jnpe.2021.04.0091
Citation: Ma Dongliang, Zhou Tao, Huang Yanping. Research on Judgment of Supercritical Water Heat Transfer Deterioration Based on Machine Learning[J]. Nuclear Power Engineering, 2021, 42(4): 91-95. doi: 10.13832/j.jnpe.2021.04.0091

Research on Judgment of Supercritical Water Heat Transfer Deterioration Based on Machine Learning

doi: 10.13832/j.jnpe.2021.04.0091
  • Received Date: 2020-06-16
  • Rev Recd Date: 2021-04-25
  • Publish Date: 2021-08-15
  • In order to further improve the safety and stability of supercritical water reactors, avoid the occurrence of the heat transfer deterioration in supercritical water, based on the existing experimental data of supercritical water heat transfer, using several main machine learning algorithms, the classification and judgment and prediction accuracy analysis of the experimental parameter state points of supercritical water were made to determine the occurrence of the heat transfer deterioration. The research results show that the random forest algorithm has the highest average prediction accuracy for the test data, reaching about 97.8%. The average prediction accuracy of the K-nearest neighbor algorithm is the lowest, but it also reaches about 91%. At the same time, the importance of various influence parameters on the selection of heat transfer deterioration was analyzed.The most important parameter related to the heat transfer deterioration judgment is the specific enthalpy, and the second important parameter is the heat transfer coefficient. The third important parameter with contribution to the heat transfer deterioration is the pipe diameter.

     

  • loading
  • [1]
    PIORO I L, DUFFEY R B. Experimental heat transfer in supercritical water flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(22): 2407-2430. doi: 10.1016/j.nucengdes.2005.05.034
    [2]
    DUFFEY R B, PIORO I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. doi: 10.1016/j.nucengdes.2004.11.011
    [3]
    WEN Q L, GU H Y. Numerical investigation of acceleration effect on heat transfer deterioration phenomenon in supercritical water[J]. Progress in Nuclear Energy, 2011, 53(5): 480-486. doi: 10.1016/j.pnucene.2011.02.012
    [4]
    PODILA K, RAO Y F. CFD analysis of flow and heat transfer in Canadian supercritical water reactor bundle[J]. Annals of Nuclear Energy, 2015(75): 1-10. doi: 10.1016/j.anucene.2014.07.039
    [5]
    HUANG D, WU Z, SUNDEN B, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016(162): 494-505. doi: 10.1016/j.apenergy.2015.10.080
    [6]
    VIKHREV Y V, BARULIN Y D, KON’KOV A S. A study of heat transfer in vertical tubes at supercritical pressures[J]. Therm Eng., 1967, 14(9): 116-119.
    [7]
    MOKRY S, PIORO I, FARAH A, et al. Development of supercritical water heat-transfer correlation for vertical bare tubes[J]. Nuclear Engineering and Design, 2011, 241(4): 1126-1136. doi: 10.1016/j.nucengdes.2010.06.012
    [8]
    WANG H, BI Q C, YANG Z D, et al. Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water[J]. Annals of Nuclear Energy, 2015(80): 416-428. doi: 10.1016/j.anucene.2015.02.029
    [9]
    潘杰,杨冬,董自春,等. 垂直上升光管内超临界水的传热特性试验研究[J]. 核动力工程,2011, 32(1): 75-80.
    [10]
    王飞,杨珏,顾汉洋,等. 垂直管内超临界水传热实验研究[J]. 原子能科学技术,2013, 47(6): 933-939. doi: 10.7538/yzk.2013.47.06.0933
    [11]
    徐峰,郭烈锦,毛宇飞,等. 超临界压力下水在垂直加热管内传热特性的实验研究[J]. 西安交通大学学报,2005, 39(5): 468-471. doi: 10.3321/j.issn:0253-987X.2005.05.007
    [12]
    MÜLLER A C, GUIDO S. Python机器学习基础教程[M]. 张亮, 译. 北京: 人民邮电出版社, 2018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (230) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return