Citation: | Liu Xiaojing, Xie Qiuxia, Chai Xiang, Cheng Xu. Status and Progress of the Multi-Physics Coupling and Multi-Scale Coupling Research for Numerical Reactors[J]. Nuclear Power Engineering, 2021, 42(5): 1-7. doi: 10.13832/j.jnpe.2021.05.0001 |
[1] |
廖玮,于洋,刘东. 开发数字化反应堆提升反应堆设计与研发能力[J]. 中国核工业,2016(2): 44-47+64.
|
[2] |
KROPACZEK D J. Consortium for advanced simulation of light water reactors: CASL-U-2020-1974-000[R]. United States: Oak Ridge National Lab(ORNL), 2020.
|
[3] |
CACUCI D G, ARAGONÉS J M, BESTION D, et al. NURESIM: a European platform for nuclear reactor simulation[C]. Luxembourg: Conference on EU Research and Training in Reactor Systems, 2006.
|
[4] |
CHANARON B. Overview of the NURESAFE European project[J]. Nuclear Engineering and Design, 2017(321): 1-7.
|
[5] |
VERSLUIS R M. NEAMS software verification and validation plan requirements version 0[EB/OL]. (2013-09-09)[2021-02-24]. https://www.energy.gov/ne/downloads/nuclear-energy-advanced-modeling-and-simulation-neams-software-verification-and.
|
[6] |
XU Y. A matrix free Newton/Krylov method for coupling complex multi-physics subsystems[D]. West Lafayette: Purdue University, 2004.
|
[7] |
冯竟超. 先进反应堆热工水力与多物理场耦合程序开发及应用研究[D]. 合肥: 中国科学技术大学, 2017.
|
[8] |
ZERKAK O, KOZLOWSKI T, GAJEV I. Review of multi-physics temporal coupling methods for analysis of nuclear reactors[J]. Annals of Nuclear Energy, 2015(84): 225-233.
|
[9] |
BEAM T M, IVANOV K N, BARATTA A J, et al. Nodal kinetics model upgrade in the Penn State coupled TRAC/NEM codes[J]. Annals of Nuclear Energy, 1999, 26(13): 1205-1219. doi: 10.1016/S0306-4549(99)00006-7
|
[10] |
BARBER D A, WANG W, MILLER R M, et al. Application of a generalized interface module to the coupling of PARCS with both RELAP5 and TRAC-M[R]. United States: Los Alamos National Lab, 1999.
|
[11] |
LIAO C, XIE Z. The coupled kinetic and thermal-hydraulic three dimensional code system NLSANMT/COBRA-IV for PWR core transient analysis[J]. Annals of Nuclear Energy, 2003, 30(04): 405-412. doi: 10.1016/S0306-4549(02)00077-4
|
[12] |
KLIEM S, KOZMENKOV Y. Comparative analysis of a pump cast-down transient using the coupled code systems DYN3D-ATHLET and DYN3D-RELAP5: FZR-407[R]. Germany: Institute of Safety Research, 2003.
|
[13] |
BAKANOV V V, ZHITNIK A K, MOTLOKHOV V N, et al. TDMCC Monte-Carlo package coupled with STAR-CD thermal-hydraulics code[J]. Transactions of the American Nuclear Society, 2004(91): 250-251.
|
[14] |
HAN G J, JIN Y C, KIM Y, et al. Consistent comparison of Monte Carlo and whole-core transport solutions for cores with thermal feedback[C]. Chicago: PHYSOR 2004-the Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, 2004: 25-29.
|
[15] |
WAATA C, SCHULENBERG T, XU C. Coupling of MCNPX with a sub-channel code for analysis of a HPLWR fuel assembly[C]. Avignon, France: International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 2005.
|
[16] |
LOZANO J A, JIMENEZ J, GARCÍA-HERRANZ N, et al. Development and performance of the ANDES/COBRA-III coupled system in hexagonal-z geometry[C]. New York: International Conference on Mathematics, Computational Methods and Reactor Physics, 2009.
|
[17] |
史敦福,李康,秦桂明,等. 蒙卡中子输运程序JMCT和子通道热工水力程序COBRA-EN耦合计算[J]. 强激光与粒子束,2017, 29(3): 32-38.
|
[18] |
SEUBERT A, LAURIEN E. The transient 3-D transport coupled code TORT-TD/ATTICA3D for high-fidelity pebble-bed HTGR analyses[J]. Transport Theory and Statistical Physics, 2012, 41(1-2): 133-152. doi: 10.1080/00411450.2012.671212
|
[19] |
ZHANG D L, ZHAI Z G, RINEISKI A, et al. Couple, a time-dependent coupled neutronics and thermal-hydraulics code, and its application to MSFR[C]. Prague: Proceedings of the 2014 22nd International Conference on Nuclear Engineering (ICONE22), 2014.
|
[20] |
MARZANO M J. Approach to coupling 3-D deterministic neutron transport and full field computational fluid dynamics[D]. Gainesville: University of Florida, 2011.
|
[21] |
GOMEZ-TORRES A M, SANCHEZ-ESPINOZA V H, IVANOV K, et al. DYNSUB: A high fidelity coupled code system for the evaluation of local safety parameters-Part II: comparison of different temporal schemes[J]. Annals of Nuclear Energy, 2012, 48(12): 123-129.
|
[22] |
WU X, KOZLOWSKI T. Coupling of system thermal-hydraulics and Monte-Carlo method for a consistent thermal-hydraulics-reactor physics feedback[C]. Charlotte: International Congress on Advances in Nuclear Power Plants, 2013.
|
[23] |
GUO J, LIU S, SHANG X, et al. Versatility and stabilization improvements of full core neutronics/thermal-hydraulics coupling between RMC and CTF[J]. Nuclear Engineering and Design, 2018(332): 88-98.
|
[24] |
TOTH A, KELLEY C T, SLATTERY S, et al. Analysis of anderson acceleration on a simplified neutronics/thermal hydraulics system[C]. Nashville, Tennessee, USA: Joint International Conference on Mathematics and Computation(M&C), Supercomputing in Nuclear Applications(SNA), and the Monte Carlo(MC) Method, 2015.
|
[25] |
TUOMINEN R, VALTAVIRTA V, LEPPÄNEN J. Application of the Serpent–OpenFOAM coupled code system to the SEALER reactor core[C]. Cancun, Mexico: PHYSOR 2018: Reactor Physics Paving the Way towards More Efficient Systems, 2018.
|
[26] |
苏光辉, 秋穗正, 田文喜. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社, 2013.
|
[27] |
ANDERSON N, HASSAN Y, SCHULTZ R. Analysis of the hot gas flow in the outlet plenum of the VHTR using coupled RELAP5-3D system code and a CFD code[J]. Nuclear Engineering and Design, 2008, 238(1): 274-279. doi: 10.1016/j.nucengdes.2007.06.008
|
[28] |
TURZÓ K, LEWITOWICZ M, HARAKEH M N. ENSAR, a nuclear science project for European research area[J]. Nuclear Physics News, 2015, 25(3): 3-4. doi: 10.1080/10619127.2015.1073512
|
[29] |
刘余,张虹,贾宝山. 核反应堆热工水力多尺度耦合模拟初步研究[J]. 核动力工程,2010, 31(S1): 11-15.
|
[30] |
贾斌,马帅,史强,等. 非能动压水堆热工水力多尺度耦合计算分析研究[J]. 核科学与工程,2018, 38(5): 763-773. doi: 10.3969/j.issn.0258-0918.2018.05.006
|
[31] |
李书舟. 铅基快堆子通道耦合分析方法研究及应用[D]. 合肥: 中国科学技术大学, 2017.
|
[32] |
BUONGIORNO J. Can corrosion and CRUD actually improve safety margins in LWRs?[J]. Annals of Nuclear Energy, 2014, 63(1): 9-21.
|
[33] |
CHABICOVSKY M, HNIZDIL MTSENG A A, et al. Effects of oxide layer on Leidenfrost temperature during spray cooling of steel at high temperatures[J]. International Journal of Heat and Mass Transfer, 2015, 88(9): 236-246.
|
[34] |
SINHA J. Effects of surface roughness, oxidation level, and liquid subcooling on the minimum film boiling temperature[J]. Experimental Heat Transfer, 2003, 16(1): 45-60. doi: 10.1080/08916150390126478
|
[35] |
SALKO R K, BLYTH T, DANCES C, et al. CASL Consortium for advanced simulation of LWRs: L3: PHI. VCS. P9.02CTF validation: CASL-U-2014-0169- 000[R]. USA: Oak Ridge National Laboratory and Pennsylvania State University, 2014.
|