Advance Search
Volume 42 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Liu Yusheng, Xu Chao, Wu Peng, Wang Nan, Li Zhenxiao. Experimental Study on Sensitivity of PRHR Pipeline Break Location on ACME Test Facility[J]. Nuclear Power Engineering, 2021, 42(5): 64-70. doi: 10.13832/j.jnpe.2021.05.0064
Citation: Liu Yusheng, Xu Chao, Wu Peng, Wang Nan, Li Zhenxiao. Experimental Study on Sensitivity of PRHR Pipeline Break Location on ACME Test Facility[J]. Nuclear Power Engineering, 2021, 42(5): 64-70. doi: 10.13832/j.jnpe.2021.05.0064

Experimental Study on Sensitivity of PRHR Pipeline Break Location on ACME Test Facility

doi: 10.13832/j.jnpe.2021.05.0064
  • Received Date: 2020-07-31
  • Rev Recd Date: 2021-03-10
  • Publish Date: 2021-09-30
  • To study the safety performance of the advanced passive (AP) nuclear power plant (NPP) under passive system failure condition, the experimental study on the loss of coolant from the passive residual heat removal (PRHR) pipeline break is performed by the advanced core-cooling mechanism experiment (ACME) facility, during which the effect of main test sequences and break location on the key parameters in different phases of the accident is analyzed. As demonstrated by the study results, the ACME PRHR pipeline break test sequences, basically same as those for the small-break loss of coolant accident (SBLOCA) of the cold leg, reproduce the safety characteristics in the natural circulation phase of the passive NPP, blowout phase of the automatic depressurization system (ADS) and safety injection (SI) phase of the in-containment refueling water storage tank (IRWST); in the test at different break locations, the passive core cooling system (PXS) can always ensure the water makeup for core and the core active region remains below the mixed liquid level; and the break locations have notable effect on the ACME LOCA accident sequence, initial depressurization rate of reactor coolant system (RCS), PRHR heat exchanger (HX) flow, blowout flow, core level, IRWST SI flow and other parameters, and have little impact on the SI flow of the core makeup tank (CMT) and accumulator (ACC).

     

  • loading
  • [1]
    WANG Y, MA J E, FANG Y T. Generation III pressurized water reactors and China's nuclear power[J]. Journal of Zhejiang University-SCIENCE A, 2016, 17(11): 911-922. doi: 10.1631/jzus.A1600035
    [2]
    常华健,李玉全,房芳芳,等. CAP1400核电站非能动安全系统试验验证[J]. 中国核电,2018, 11(2): 172-177.
    [3]
    庞博,玉宇,汪彬. 地震下非能动堆芯冷却系统可靠性分析[J]. 原子能科学技术,2018, 52(5): 896-903. doi: 10.7538/yzk.2018.52.05.0896
    [4]
    肖三平,陈树山,吴昊. 非能动余热排出换热器在主给水管道断裂事故下的冷却能力研究[J]. 原子能科学技术,2016, 50(3): 454-458. doi: 10.7538/yzk.2016.50.03.0454
    [5]
    莫小锦,佟立丽,曹学武. AP1000丧失正常给水事故PRHR冷却能力研究[J]. 科技导报,2012, 30(21): 26-29. doi: 10.3981/j.issn.1000-7857.2012.21.002
    [6]
    徐财红,史国宝. AP1000小破口失水事故中的重要热工水力现象[J]. 核电工程与技术,2013(2): 1-6, 25.
    [7]
    杨江,田文喜,苏光辉,等. AP1000冷管段小破口失水事故分析[J]. 原子能科学技术,2011, 45(5): 541-547.
    [8]
    袁明豪,冯雷,周拥辉,等. AP1000核电厂蒸汽发生器传热管破裂事故的分析研究[J]. 核安全,2009(4): 37-41.
    [9]
    庄少欣,孙微,刘宇生,等. 基于TRACE的大功率非能动核电厂自动泄压系统误启动事故计算[J]. 核科学与工程,2019, 39(4): 588-594. doi: 10.3969/j.issn.0258-0918.2019.04.014
    [10]
    乔雪冬,王昆鹏,靖剑平,等. AP1000核电厂直接注射管线双端断裂小破口失水事故计算[J]. 核科学与工程,2015, 35(2): 306-313. doi: 10.3969/j.issn.0258-0918.2015.02.019
    [11]
    REYES J N, HOCHREITER L. Scaling analysis for the OSU AP600 test facility (APEX)[J]. Nuclear Engineering and Design, 1998, 186(1-2): 53-109. doi: 10.1016/S0029-5493(98)00218-0
    [12]
    LI Y Q, CHANG H J, YE Z S, et al. Analyses of ACME integral test results on CAP1400 small-break loss-of-coolant-accident transient[J]. Progress in Nuclear Energy, 2016(88): 375-397. doi: 10.1016/j.pnucene.2016.01.012
    [13]
    房芳芳,杨福明,郝博涛,等. ACME试验台架典型小破口工况试验及数值分析[J]. 原子能科学技术,2017, 51(8): 1393-1399. doi: 10.7538/yzk.2017.51.08.1393
    [14]
    刘宇生,许超,房芳芳,等. ACME台架全厂断电事故试验研究[J]. 原子能科学技术,2018, 52(8): 1438-1444. doi: 10.7538/yzk.2017.youxian.0780
    [15]
    刘宇生, 许超, 庄少欣, 等. PXS非能动余热排出热交换器隔离阀前或阀后破口试验及分析方法评价报告: KY2019-029[R]. 北京: 环境保护部核与辐射安全中心, 2018.
    [16]
    WANG W W, SU G H, QIU S Z, et al. Thermal hydraulic phenomena related to small break LOCAs in AP1000[J]. Progress in Nuclear Energy, 2011, 53(4): 407-419. doi: 10.1016/j.pnucene.2011.02.007
    [17]
    林支康. AP1000核电厂小破口失水事故RELAP5分析模式建立与应用[D]. 上海: 上海交通大学, 2012.
    [18]
    卢霞,匡波,孔浩铮,等. SBLOCA整体试验台架的比例模化分析与初步评估[J]. 应用科技,2019, 46(5): 80-87.
    [19]
    陈炼,常华健,李玉全,等. ACME整体性能试验设施工作压力选取方案分析[J]. 原子能科学技术,2011, 45(10): 1215-1220.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (227) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return