Citation: | Hu Wenchao, Pan Xinyi, Zhang Pan, Zhao Chuanqi, Sun Haixu, Yi Yan. Analysis of Sentitivity of Fission Product Iodine in Containment to Various Factors under Severe Accidents[J]. Nuclear Power Engineering, 2021, 42(5): 182-188. doi: 10.13832/j.jnpe.2021.05.0182 |
[1] |
CHATELARD P, REINKE N, ARNDT S, et al. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives[J]. Nuclear Engineering and Design, 2014, 272: 119-135. doi: 10.1016/j.nucengdes.2013.06.040
|
[2] |
CANTREL L, COUSIN F, BOSLAND L, et al. ASTEC V2 severe accident integral code: fission product modelling and validation[J]. Nuclear Engineering and Design, 2014, 272: 195-206. doi: 10.1016/j.nucengdes.2014.01.011
|
[3] |
BOSLAND L. ASTEC v2.0 rev2 code iode module: iodine and ruthenium behavior in the containment: Rev. 1, DPAM-SEMIC-2011-345[R]. France: Institue de Radioprotection et de Surete Nucleaire (IRSN), 2011.
|
[4] |
HU W C, ZHAO C Q, BI J S, et al. ASTEC simulation of fission product source term ruthenium in coolant in severe accident[J]. Annals of Nuclear Energy, 2019, 133: 658-664. doi: 10.1016/j.anucene.2019.06.063
|
[5] |
SOFFER L, BURSON S B, FERRELL C M, et al. Accident source terms for light-water nuclear power plants: NUREG-1465[R]. Washington: Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 1995.
|
[6] |
BAKER JR L, RITZMAN R L, FINK J K, et al. Summary results of the treat source term experiments project (STEP)[C]//Proceedings of the International ENS/ANS Conference on Thermal Reactor Safety. France, 1988: 2127-2136.
|
[7] |
OSETEK D J, CRONENBERG A W, HOBBINS R R, et al. Fission product behaviour during the first two PBF severe fuel damage tests[C]//American Nuclear Society Meeting on Fission Product Behaviour and Source Term Research. Snowbird, UT, USA, 1985
|