Advance Search
Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zhao Qingbing, Wei Shiyuan, Zhai Xiaofei, Lyu Yuanliang, Wang Zihu, Pan Fan, Zhao Tong. Parameter Autoregression Algorithm-Based Early Warning Method for Critical Equipment in Nuclear Power Plants[J]. Nuclear Power Engineering, 2021, 42(6): 209-214. doi: 10.13832/j.jnpe.2021.06.0209
Citation: Zhao Qingbing, Wei Shiyuan, Zhai Xiaofei, Lyu Yuanliang, Wang Zihu, Pan Fan, Zhao Tong. Parameter Autoregression Algorithm-Based Early Warning Method for Critical Equipment in Nuclear Power Plants[J]. Nuclear Power Engineering, 2021, 42(6): 209-214. doi: 10.13832/j.jnpe.2021.06.0209

Parameter Autoregression Algorithm-Based Early Warning Method for Critical Equipment in Nuclear Power Plants

doi: 10.13832/j.jnpe.2021.06.0209
  • Received Date: 2020-09-15
  • Rev Recd Date: 2020-11-11
  • Publish Date: 2021-12-09
  • A methodology based on the parameter autoregression algorithm is designed and developed for the early warning of critical equipment in nuclear power plants. The method innovatively introduces a parameter autoregression algorithm based on multi-dimensional time sequence data, which estimates the parameters under normal operation of the equipment and extracts the residual characteristics by comparing them with the measured values, thus realizing a dynamic threshold-based equipment condition monitoring mechanism. In addition, combined with the equipment mechanism, this study proposes and adopts the key concept of measurement point importance, and through the modeling of the core components of the equipment, the identification of the equipment operating state, the early warning of abnormal signs, the identification of faulty components and the generation of relevant alarm events are achieved. This study tests and validates the designed and developed method on the reactor coolant pump (hereinafter referred to as the main pump), the core equipment of AP1000 nuclear power unit. Through the analysis of the actual operation data and abnormal events of the main pump, compared with the existing equipment condition monitoring methods, the newly established early warning method for critical equipment can detect abnormal signs of relevant equipment at an early stage, produce early warning, and provide key information to assist engineers in fault analysis and localization, thus significantly shortening the time for fault diagnosis and troubleshooting, and greatly reducing the manpower input for critical equipment monitoring.

     

  • loading
  • [1]
    张明乾,刘昱,李承亮. 浅谈压水堆核电站AP1000屏蔽式电动主泵[J]. 水泵技术,2008(4): 1-5.
    [2]
    毛昌森,陈富彬. AP1000蒸汽发生器与主泵泵壳焊接接头无损检测问题分析[J]. 核动力工程,2013, 34(6): 143-147. doi: 10.3969/j.issn.0258-0926.2013.06.034
    [3]
    官益豪. 三门核电AP1000机组无损检验技术能力验证实践探讨及分析[J]. 无损检测,2014, 36(5): 73-77+79.
    [4]
    魏士源. 三门核电AP1000机组系统工程师巡检方案的策划与实施[J]. 科技创新导报,2018, 15(11): 61-62.
    [5]
    郑华文,曹衍龙,杨将新,等. 基于支持向量机的核电站松动件质量估计方法[J]. 浙江大学学报:工学版,2010, 44(8): 1525-1529.
    [6]
    李彬. 时频分析技术在AP1000特殊监测系统中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
    [7]
    陈志辉,夏虹,王涛涛. 基于小波分析的主冷却剂泵转子故障诊断方法研究[J]. 核动力工程,2008, 29(3): 108-112.
    [8]
    HINES J W, GARVEY D, SEIBERT R, et al. Technical review of on-line monitoring techniques for performance assessment, Volume 2: Theoretical issues[R]. Washington: U.S. Nuclear Regulatory Commission, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (247) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return