Citation: | Xi Zhiguo, Zhang Luteng, Hu Yuwen, Gong Houjun, Ma Zaiyong, Sun Wan, Zhou Wenxiong, Pan Liangming. Large-Eddy Simulation Numerical Study on Phase Change Heat Transfer Characteristics of Melting Pool[J]. Nuclear Power Engineering, 2022, 43(1): 15-21. doi: 10.13832/j.jnpe.2022.01.0015 |
[1] |
THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel cool ability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169(1-3): 1-48. doi: 10.1016/S0029-5493(97)00009-5
|
[2] |
KYMALAINEN O, TUOMISTO H, HONGISTO O, et al. Heat-flux distribution from a volumetrically heated pool with high Rayleigh number[J]. Nuclear Engineering and Design, 1994, 149(1-3): 401-408. doi: 10.1016/0029-5493(94)90305-0
|
[3] |
ZHANG Y P, ZHANG L T, ZHOU Y K, et al. The COPRA experiments on the in-vessel melt pool behavior in the RPV lower head[J]. Annals of Nuclear Energy, 2016(89): 19-27.
|
[4] |
BUCK M, BURGER M, MIASSOEDOV A, et al. The LIVE program-results of test L1 and joint analyses on transient molten pool thermal hydraulics[J]. Progress in Nuclear Energy, 2010, 52(1): 46-60. doi: 10.1016/j.pnucene.2009.09.007
|
[5] |
TRAN C T, DINH T N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part I: physical processes, modeling and model implementation[J]. Progress in Nuclear Energy, 2009, 51(8): 849-859. doi: 10.1016/j.pnucene.2009.06.007
|
[6] |
TRAN C T, DINH T N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part II: model assessment and application[J]. Progress in Nuclear Energy, 2009, 51(8): 860-871. doi: 10.1016/j.pnucene.2009.06.001
|
[7] |
ZHANG Y P, SU G H, QIU S Z, et al. A simple novel and fast computational model for the LIVE-L4[J]. Progress in Nuclear Energy, 2013(68): 20-30.
|
[8] |
张卢腾,苏光辉,马在勇,等. 二维瞬态熔融池传热特性分析程序开发与验证[J]. 核动力工程,2019, 40(S2): 1-5.
|
[9] |
FUKASAWA M, HAYAKAWA S, SAITO M. Thermal-hydraulic analysis for inversely stratified molten corium in lower vessel[J]. Journal of Nuclear Science and Technology, 2008, 45(9): 873-888. doi: 10.1080/18811248.2008.9711489
|
[10] |
KHAROUA N, KHEZZAR L, NEMOUCHI Z, et al. LES study of the combined effects of groups of vortices generated by a pulsating turbulent plane jet impinging on a semi-cylinder[J]. Applied Thermal Engineering, 2017(114): 948-960.
|
[11] |
VOLLER V R, PRAKASH C. A fixed-grid numerical modeling methodology for convection-diffusion mushy region phase- change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. doi: 10.1016/0017-9310(87)90317-6
|
[12] |
王溪,孟召灿,程旭. 基于OpenFOAM的熔融池自然对流传热与凝固数值研究[J]. 原子能科学技术,2015, 49(8): 1393-1398. doi: 10.7538/yzk.2015.49.08.1393
|
[13] |
RÖSLER F, BRÜGGEMANN D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and Mass Transfer, 2011, 47(8): 1027-1033. doi: 10.1007/s00231-011-0866-9
|
[14] |
GAUS-LIU X, MJASOEDOV A, CRON T, et al. In-vessel melt pool coolibility test—description and results of LIVE experiments[J]. Nuclear Engineering and Design, 2010(240): 3898-3903.
|
[15] |
GAUS-LIU X, MJASOEDOV A, CRON T, et al. Test and simulation results of LIVE-L4+LIVE-L5L[R]. Germany: Karlsruhe Institute of Technology, 2011.
|
[16] |
DINH T N, KONOVALIKHIN M J, SEHGAL B R. Core melt spreading on a reactor containment floor[J]. Progress in Nuclear Energy, 2000, 36(4): 405-468. doi: 10.1016/S0149-1970(00)00088-3
|
[17] |
PHAM Q T, SEILER J M, COMBEAU H, et al. Modeling of heat transfer and solidification in LIVE-L3A experiment[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 691-701. doi: 10.1016/j.ijheatmasstransfer.2012.11.030
|
[18] |
MARUYAMA Y, YAMANO N, MORIYAMA K, et al. Experimental study on in-vessel debris coolability in ALPHA program[J]. Nuclear Engineering and Design, 1999, 187(2): 241-254. doi: 10.1016/S0029-5493(98)00278-7
|
[19] |
SEHGAL B, GIRI A, CHIKKANAGOUDAR U, et al. Experiments on in-vessel melt coolability in the EC-FOREVER program[J]. Nuclear Engineering and Design, 2006, 236(19): 2199-2210.
|