Advance Search
Volume 43 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Xi Zhiguo, Zhang Luteng, Hu Yuwen, Gong Houjun, Ma Zaiyong, Sun Wan, Zhou Wenxiong, Pan Liangming. Large-Eddy Simulation Numerical Study on Phase Change Heat Transfer Characteristics of Melting Pool[J]. Nuclear Power Engineering, 2022, 43(1): 15-21. doi: 10.13832/j.jnpe.2022.01.0015
Citation: Xi Zhiguo, Zhang Luteng, Hu Yuwen, Gong Houjun, Ma Zaiyong, Sun Wan, Zhou Wenxiong, Pan Liangming. Large-Eddy Simulation Numerical Study on Phase Change Heat Transfer Characteristics of Melting Pool[J]. Nuclear Power Engineering, 2022, 43(1): 15-21. doi: 10.13832/j.jnpe.2022.01.0015

Large-Eddy Simulation Numerical Study on Phase Change Heat Transfer Characteristics of Melting Pool

doi: 10.13832/j.jnpe.2022.01.0015
  • Received Date: 2021-01-04
  • Rev Recd Date: 2021-03-02
  • Publish Date: 2022-02-01
  • The research of flow and heat transfer characteristics in reactor melting pool is of great significance to ensure the in-vessel retention. Based on the open source software OpenFOAM platform, combined with the large-eddy simulation turbulence method and the phase change process of the melting pool, this paper establishes the heat transfer model of the melting pool, carries out numerical calculation for the LIVE working condition of the typical melting pool heat transfer experiment, and obtains the velocity field and temperature field in the melting pool, as well as the thickness and heat flux distribution of the hard shell on the inner wall of the lower head. The results show that the velocity, temperature and heat flux density in the melting pool increase with the increase of height or radial angle, the thickness of the hard shell decreases with the increase of radial angle, and the heat load on the wall of the lower head accumulates at the top. The heat transfer parameter calculation results are in good agreement with the experimental data as a whole, which can effectively reflect the natural convection and phase change process in the melting pool, verify the reliability of the calculation model, and provide a reference for further research on the phase change heat transfer characteristics of the melting pool.

     

  • loading
  • [1]
    THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel cool ability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169(1-3): 1-48. doi: 10.1016/S0029-5493(97)00009-5
    [2]
    KYMALAINEN O, TUOMISTO H, HONGISTO O, et al. Heat-flux distribution from a volumetrically heated pool with high Rayleigh number[J]. Nuclear Engineering and Design, 1994, 149(1-3): 401-408. doi: 10.1016/0029-5493(94)90305-0
    [3]
    ZHANG Y P, ZHANG L T, ZHOU Y K, et al. The COPRA experiments on the in-vessel melt pool behavior in the RPV lower head[J]. Annals of Nuclear Energy, 2016(89): 19-27.
    [4]
    BUCK M, BURGER M, MIASSOEDOV A, et al. The LIVE program-results of test L1 and joint analyses on transient molten pool thermal hydraulics[J]. Progress in Nuclear Energy, 2010, 52(1): 46-60. doi: 10.1016/j.pnucene.2009.09.007
    [5]
    TRAN C T, DINH T N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part I: physical processes, modeling and model implementation[J]. Progress in Nuclear Energy, 2009, 51(8): 849-859. doi: 10.1016/j.pnucene.2009.06.007
    [6]
    TRAN C T, DINH T N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part II: model assessment and application[J]. Progress in Nuclear Energy, 2009, 51(8): 860-871. doi: 10.1016/j.pnucene.2009.06.001
    [7]
    ZHANG Y P, SU G H, QIU S Z, et al. A simple novel and fast computational model for the LIVE-L4[J]. Progress in Nuclear Energy, 2013(68): 20-30.
    [8]
    张卢腾,苏光辉,马在勇,等. 二维瞬态熔融池传热特性分析程序开发与验证[J]. 核动力工程,2019, 40(S2): 1-5.
    [9]
    FUKASAWA M, HAYAKAWA S, SAITO M. Thermal-hydraulic analysis for inversely stratified molten corium in lower vessel[J]. Journal of Nuclear Science and Technology, 2008, 45(9): 873-888. doi: 10.1080/18811248.2008.9711489
    [10]
    KHAROUA N, KHEZZAR L, NEMOUCHI Z, et al. LES study of the combined effects of groups of vortices generated by a pulsating turbulent plane jet impinging on a semi-cylinder[J]. Applied Thermal Engineering, 2017(114): 948-960.
    [11]
    VOLLER V R, PRAKASH C. A fixed-grid numerical modeling methodology for convection-diffusion mushy region phase- change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. doi: 10.1016/0017-9310(87)90317-6
    [12]
    王溪,孟召灿,程旭. 基于OpenFOAM的熔融池自然对流传热与凝固数值研究[J]. 原子能科学技术,2015, 49(8): 1393-1398. doi: 10.7538/yzk.2015.49.08.1393
    [13]
    RÖSLER F, BRÜGGEMANN D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and Mass Transfer, 2011, 47(8): 1027-1033. doi: 10.1007/s00231-011-0866-9
    [14]
    GAUS-LIU X, MJASOEDOV A, CRON T, et al. In-vessel melt pool coolibility test—description and results of LIVE experiments[J]. Nuclear Engineering and Design, 2010(240): 3898-3903.
    [15]
    GAUS-LIU X, MJASOEDOV A, CRON T, et al. Test and simulation results of LIVE-L4+LIVE-L5L[R]. Germany: Karlsruhe Institute of Technology, 2011.
    [16]
    DINH T N, KONOVALIKHIN M J, SEHGAL B R. Core melt spreading on a reactor containment floor[J]. Progress in Nuclear Energy, 2000, 36(4): 405-468. doi: 10.1016/S0149-1970(00)00088-3
    [17]
    PHAM Q T, SEILER J M, COMBEAU H, et al. Modeling of heat transfer and solidification in LIVE-L3A experiment[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 691-701. doi: 10.1016/j.ijheatmasstransfer.2012.11.030
    [18]
    MARUYAMA Y, YAMANO N, MORIYAMA K, et al. Experimental study on in-vessel debris coolability in ALPHA program[J]. Nuclear Engineering and Design, 1999, 187(2): 241-254. doi: 10.1016/S0029-5493(98)00278-7
    [19]
    SEHGAL B, GIRI A, CHIKKANAGOUDAR U, et al. Experiments on in-vessel melt coolability in the EC-FOREVER program[J]. Nuclear Engineering and Design, 2006, 236(19): 2199-2210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (343) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return