Citation: | Zhang Xueyan, Deng Chengcheng, Zhu Donglai, Chen Wei, Ding Shuhua, Yang Jun. Research on Verification Methodology of Applicability of Integral Effect Test Data Based on Dimensionless Criterion Numbers[J]. Nuclear Power Engineering, 2022, 43(1): 64-71. doi: 10.13832/j.jnpe.2022.01.0064 |
[1] |
刘宇生,许超,谭思超,等. 整体试验台架非能动换热器的比例模化及设计[J]. 哈尔滨工程大学学报,2019, 40(3): 449-455.
|
[2] |
郝建立,陈文振,王少明. 自然循环蒸汽发生器倒U型管内倒流特性的无量纲分析[J]. 原子能科学技术,2012, 46(S1): 246-249.
|
[3] |
陈常念,韩吉田,邵莉,等. 临界热流密度流体模化广义准则数研究[J]. 原子能科学技术,2010, 44(5): 558-561.
|
[4] |
王杰,刘东,刘盈,等. 失水事故分析程序临界流模型改进及验证[J]. 核动力工程,2019, 40(1): 28-32.
|
[5] |
曾未,王杰,黄涛,等. 压水堆大破口失水事故重要现象识别及数值计算不确定性量化分析研究[J]. 核动力工程,2021, 42(1): 198-203.
|
[6] |
LIAO J. System scaling analysis for modeling small break LOCA using the FULL SPECTRUM LOCA evaluation model[J]. Annals of Nuclear Energy, 2016, 87: 443-453. doi: 10.1016/j.anucene.2015.09.014
|
[7] |
国家核安全局. 核动力厂安全分析用计算机软件开发与应用(试行): HAD102[S]. 北京: 国家核安全局, 2017: 3-55.
|
[8] |
YANG J, CHOI S W, LIM J, et al. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility[J]. Nuclear Engineering and Design, 2013, 258: 249-257. doi: 10.1016/j.nucengdes.2013.02.034
|
[9] |
LIU T J, LEE C H, WAY Y S. IIST and LSTF counterpart test on PWR station blackout transient[J]. Nuclear Engineering and Design, 1997, 167(3): 357-373. doi: 10.1016/S0029-5493(96)01302-7
|
[10] |
WULFF W, ROHATGI U S. System scaling for the Westinghouse AP600 pressurized water reactor and related test facilities: analysis and results: NUREG/CR-5541[R]. Washington, DC: Division of Systems Technology, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 1998.
|
[11] |
DENG C C, ZHANG X Y, YANG Y, et al. Research on scaling design and applicability evaluation of integral thermal-hydraulic test facilities: a review[J]. Annals of Nuclear Energy, 2019, 131: 273-290. doi: 10.1016/j.anucene.2019.03.042
|
[12] |
ADDABBO C, ANNUNZIATO A. The LOBI integral system test facility experimental programme[J]. Science and Technology of Nuclear Installations, 2012, 2012: 238019.
|
[13] |
SCRIVEN A H. Analysis of LOBI test BLO2 (three percent cold leg break) with RELAP5 code: NUREG/IA-0036[R]. Washington: Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 1992.
|
[14] |
DAO L T L, CARPENTER J M. Experiment data report for LOFT nuclear small break experiment L3-5/L3-5A: NUREG/CR-1695[R]. Unitedstates: INEL, 1980.
|
[15] |
BESTION D, D'AURIA F, LIEN P, et al. Scaling in system thermal-hydraulics applications to nuclear reactor safety and design: a state-of-the-art report: NEA/CSNI/R(2016)14[R]. France: OECD, NEA, 2017.
|
[16] |
BANERJEE S, ORTIZ M G, LARSON T K, et al. Scaling in the safety of next generation reactors[J]. Nuclear Engineering and Design, 1998, 186(1-2): 111-133. doi: 10.1016/S0029-5493(98)00219-2
|
[17] |
ZUBER N, ROHATGI U S, WULFF W, et al. Application of fractional scaling analysis (FSA) to loss of coolant accidents (LOCA): methodology development[J]. Nuclear Engineering and Design, 2007, 237(15-17): 1593-1607. doi: 10.1016/j.nucengdes.2007.01.017
|
[18] |
BUCKINGHAM E. On physically similar systems; illustrations of the use of dimensional equations[J]. Physical Review, 1914, 4(4): 345-376. doi: 10.1103/PhysRev.4.345
|
[19] |
FREPOLI C, OHKAWA K. Realistic LOCA evaluation methodology applied to the full spectrum of break sizes (full spectrum LOCA methodology): WCAP-16996-P[R]. U. S. : Westinghouse Electric Company, 2010.
|
[20] |
NAHAVANDI A N, CASTELLANA F S, MORADKHANIAN E N. Scaling laws for modeling nuclear reactor systems[J]. Nuclear Science and Engineering, 1979, 72(1): 75-83. doi: 10.13182/NSE79-A19310
|
[21] |
REYES J. Natural circulation in water cooled nuclear power plants phenomena, models, and methodology for system reliability assessments: IAEA-TECDOC-1474[R]. Austria: Nuclear Power Technology Development Section, International Atomic Energy Agency, 2005.
|