Advance Search
Volume 43 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Zhang Cheng, Yan Xiao, Peng Shinian, Yuan Dewen, Liu Wenxing. Research on Adsorption and Energy Storage of Refrigerants R1234yf and R32 in MOF-74[J]. Nuclear Power Engineering, 2022, 43(3): 1-6. doi: 10.13832/j.jnpe.2022.03.0001
Citation: Zhang Cheng, Yan Xiao, Peng Shinian, Yuan Dewen, Liu Wenxing. Research on Adsorption and Energy Storage of Refrigerants R1234yf and R32 in MOF-74[J]. Nuclear Power Engineering, 2022, 43(3): 1-6. doi: 10.13832/j.jnpe.2022.03.0001

Research on Adsorption and Energy Storage of Refrigerants R1234yf and R32 in MOF-74

doi: 10.13832/j.jnpe.2022.03.0001
  • Received Date: 2021-05-10
  • Rev Recd Date: 2021-07-14
  • Publish Date: 2022-06-07
  • The heat absorption of circulating working medium can be improved by using the mutual transformation of thermal energy and surface energy in the process of adsorption and separation of fluid molecules on the solid surface of nano-porous materials. In this paper, molecular simulation (molecular dynamics and Grand Canonical Monte Carlo) and adsorption theory are used to study the adsorption and energy storage of R1234yf and R32 in MOF-74. In the adsorption of pure working medium, it is found that the adsorption capacity of R32 in MOF is higher than that of R1234yf. The adsorption capacity of refrigerant in Zn-MOF-74 is larger than that in Co-MOF-74, and the pressure required for R1234yf to reach saturation adsorption is lower than that required for R32 to reach saturation in the corresponding adsorbent. In the mixed working medium adsorption, the adsorption capacity of R1234yf is higher than that of R32. With the increase of temperature, the adsorption capacity of R1234yf shows a gradually increasing trend, while that of R32 gradually decreases. The energy storage calculation shows that the higher the mass fraction of M-MOF-74 (M = Co, Zn) particles, the more heat energy needed to be absorbed for the phase transition of the mixed working medium.

     

  • loading
  • [1]
    WU C, XU X X, LI Q B, et al. Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle[J]. Energy Conversion and Management, 2021, 227: 113562. doi: 10.1016/j.enconman.2020.113562
    [2]
    陈晓雪,刘朝,李期斌,等. 混合工质(R227ea/R245fa)有机朗肯循环的动态特性研究[J]. 工程热物理学报,2020, 41(7): 1604-1611.
    [3]
    CHEN X X, LIU C, LI Q B, et al. Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids[J]. Energy, 2020, 191: 116576. doi: 10.1016/j.energy.2019.116576
    [4]
    WANG S K, LIU C, REN J Z, et al. Carbon footprint analysis of organic Rankine cycle system using zeotropic mixtures considering leak of fluid[J]. Journal of Cleaner Production, 2019, 239: 118095. doi: 10.1016/j.jclepro.2019.118095
    [5]
    SUN Z, LIU C, XU X X, et al. Comparative carbon and water footprint analysis and optimization of Organic Rankine Cycle[J]. Applied Thermal Engineering, 2019, 158: 113769. doi: 10.1016/j.applthermaleng.2019.113769
    [6]
    CHEN X X, LIU C, LI Q B, et al. Dynamic analysis and control strategies of Organic Rankine Cycle system for waste heat recovery using zeotropic mixture as working fluid[J]. Energy Conversion and Management, 2019, 192: 321-334.
    [7]
    CAI S Y, LI Q B, LIU C, et al. Evaporation of R32/R152a mixtures on the Pt surface: a molecular dynamics study[J]. International Journal of Refrigeration, 2020, 113: 156-163. doi: 10.1016/j.ijrefrig.2020.02.007
    [8]
    景玲玲,冯卉,郭晓林. 基加利修正案情况介绍[J]. 聚氨酯工业,2017, 32(S1): 17-18.
    [9]
    王博,张伟,马洋博,等. 第四代制冷剂HFO-1234yf[J]. 化工新型材料,2010, 38(8): 30-32,40. doi: 10.3969/j.issn.1006-3536.2010.08.011
    [10]
    马一太,王派,李敏霞,等. 温室效应及第四代制冷工质[J]. 制冷技术,2017, 37(5): 8-13. doi: 10.3969/j.issn.2095-4468.2017.05.002
    [11]
    HU J Y, LIU C, LIU L, et al. Thermal energy storage of R1234yf, R1234ze, R134a and R32/MOF-74 nanofluids: a molecular simulation study[J]. Materials, 2018, 11(7): 1164. doi: 10.3390/ma11071164
    [12]
    HU J Y, LIU C, LI Q B, et al. Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1345-1348. doi: 10.1016/j.ijheatmasstransfer.2018.04.162
    [13]
    SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 724-781. doi: 10.1021/cr2003272
    [14]
    BLOCH E D, HUDSON M R, MASON J A, et al. Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations[J]. Journal of the American Chemical Society, 2014, 136(30): 10752-10761. doi: 10.1021/ja505318p
    [15]
    MCGRAIL B P, THALLAPALLY P K, BLANCHARD J, et al. Metal-organic heat carrier nanofluids[J]. Nano Energy, 2013, 2(5): 845-855. doi: 10.1016/j.nanoen.2013.02.007
    [16]
    NIST. NIST standard reference database[EB/OL].(2018-09-18)[2021-04-10]. https://www.nist.gov/srd.
    [17]
    FRENKEL D, SMIT B. Understanding molecular simulation: from algorithms to applications[M]. 2nd ed. San Diego: Academic Press, 2002: 66.
    [18]
    PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
    [19]
    RAPPE A K, CASEWIT C J, COLWELL K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035. doi: 10.1021/ja00051a040
    [20]
    CAI S Y, WU C, LI X X, et al. Effects of lubricant on evaporation and boiling processes of R1234ze(E): a molecular dynamics study[J]. Applied Thermal Engineering, 2021, 193: 117009. doi: 10.1016/j.applthermaleng.2021.117009
    [21]
    LI Q B, XIAO Y T, SHI X Y, et al. Rapid evaporation of water on graphene/graphene-oxide: a molecular dynamics study[J]. Nanomaterials, 2017, 7(9): 265. doi: 10.3390/nano7090265
    [22]
    LI Q B, WANG M, LIANG Y P, et al. Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 90: 137-142. doi: 10.1016/j.physe.2017.03.024
    [23]
    HU J Y, LIU C, LI Q B, et al. Thermal energy storage of R1234yf/MOF-5 and R1234ze(Z)/MOF-5 nanofluids: a molecular simulation study[J]. Energy Procedia, 2019, 158: 4604-4610. doi: 10.1016/j.egypro.2019.01.870
    [24]
    WANG S K, ZHANG L, LIU C, et al. Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery[J]. Energy, 2021, 231: 120956. doi: 10.1016/j.energy.2021.120956
    [25]
    BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. doi: 10.1063/1.448118
    [26]
    LEI G P, LI Q B, LIU H T, et al. Selective adsorption of CO2 by Hex-star phosphorene from natural gas: combining molecular simulation and real adsorbed solution theory[J]. Chemical Engineering Science, 2021, 231: 116283. doi: 10.1016/j.ces.2020.116283
    [27]
    李期斌,蔡守银,刘朝. R1234yf,R1234ze(z),R32及其混合工质在Co-MOF-74中吸附储能的分子模拟[J]. 科学通报,2020, 65(7): 633-640.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (952) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return