Advance Search
Volume 43 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Liu Shichao, Pang Hua, Zhou Yi, Li Yuanming, He Liang, Zhang Kun, Tu Teng. Thermal Shock Behavior Analysis of SiC Composite Cladding[J]. Nuclear Power Engineering, 2022, 43(3): 107-112. doi: 10.13832/j.jnpe.2022.03.0107
Citation: Liu Shichao, Pang Hua, Zhou Yi, Li Yuanming, He Liang, Zhang Kun, Tu Teng. Thermal Shock Behavior Analysis of SiC Composite Cladding[J]. Nuclear Power Engineering, 2022, 43(3): 107-112. doi: 10.13832/j.jnpe.2022.03.0107

Thermal Shock Behavior Analysis of SiC Composite Cladding

doi: 10.13832/j.jnpe.2022.03.0107
  • Received Date: 2021-03-29
  • Accepted Date: 2021-11-03
  • Rev Recd Date: 2021-05-12
  • Publish Date: 2022-06-07
  • In order to solve the problems of poor convergence and insufficient research on thermal shock performance in the simulation of thermal shock behavior of SiC composite cladding, this paper simulates the internal stress state of double-layer SiC composite cladding under Loss of Coolant Accident (LOCA), uses the COMSOL software of multi-physical field coupling to numerically simulate the thermal shock behavior of SiC composite cladding, and analyzes the effects of thickness ratio, thermal shock temperature and end plug on the thermal shock resistance of SiC composite cladding. The results show that the circumferential stress produced by thermal shock increases with the increase of the thickness ratio of chemical vapor infiltration layer (CVI layer) to chemical vapor deposition layer (CVD layer); When the thickness ratio of CVI layer to CVD layer is 9:1, the circumferential tensile stress of SiC composite cladding during thermal shock can reach 113 MPa; The circumferential stress produced by thermal shock increases with the increase of thermal shock temperature difference. When the thermal shock temperature is 1200 K, the circumferential stress is 112.7 MPa; During thermal shock, there is obvious stress concentration at the end plug, and its radial stress is up to 22.3 MPa, which is higher than the bonding strength reported in the literature (20~25 MPa), which is the main reason for the failure of the end plug connection.

     

  • loading
  • [1]
    LEE Y, MCKRELL T J, KAZIMI M S. Thermal shock fracture of silicon carbide and its application to LWR fuel cladding performance during reflood[J]. Nuclear Engineering and Technology, 2013, 45(6): 811-820. doi: 10.5516/NET.02.2013.528
    [2]
    BEN-BELGACEM M, RICHET V, TERRANI K A, et al. Thermo-mechanical analysis of LWR SiC/SiC composite cladding[J]. Journal of Nuclear Materials, 2014, 447(1-3): 125-142. doi: 10.1016/j.jnucmat.2014.01.006
    [3]
    LEE Y, NO H C, LEE J I. Design optimization of multi-layer Silicon Carbide cladding for light water reactors[J]. Nuclear Engineering and Design, 2017, 311: 213-223. doi: 10.1016/j.nucengdes.2016.11.016
    [4]
    路怀玉,庞华,刘仕超,等. SiC复合包壳热-力学行为计算理论分析[J]. 核动力工程,2020, 41(S2): 121-125.
    [5]
    STONE J G, SCHLEICHER R, DECK C P, et al. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 682-697. doi: 10.1016/j.jnucmat.2015.08.001
    [6]
    周毅,刘仕超,陈平,等. FCM燃料堆内行为模拟及结构设计研究[J]. 核动力工程,2020, 41(5): 197-200.
    [7]
    KATOH Y, OZAWA K, SHIH C, et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects[J]. Journal of Nuclear Materials, 2014, 448(1-3): 448-476. doi: 10.1016/j.jnucmat.2013.06.040
    [8]
    HALES J D, TONKS M R, GLEICHER F N, et al. Advanced multiphysics coupling for LWR fuel performance analysis[J]. Annals of Nuclear Energy, 2015, 84: 98-110. doi: 10.1016/j.anucene.2014.11.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (642) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return