Citation: | Guo Shuwei, Chen ZhenPing, Jiang Xinbiao, Li Da, Zhang Xinyi, Wang Lipeng, Hu Tianliang, Xie Jinsen, Yu Tao. Study on Neutronic/Thermal-Mechanical Coupling Calculation Method for Fast-neutron Pulse Reactor with Metallic Nuclear Fuel[J]. Nuclear Power Engineering, 2022, 43(4): 31-37. doi: 10.13832/j.jnpe.2022.04.0031 |
[1] |
贺仁辅, 邓门才. 快中子临界装置和脉冲堆实验物理[M]. 北京: 国防工业出版社, 2012: 34-37
|
[2] |
钟力晗,高辉,梁文峰,等. 金属型脉冲堆惯性效应计算[J]. 强激光与粒子束,2017, 29(9): 096003. doi: 10.11884/HPLPB201729.170031
|
[3] |
梁文峰,谢奇林,高辉,等. 基于波形逼近的快中子脉冲堆耦合计算[J]. 原子能科学技术,2016, 50(11): 2018-2022.
|
[4] |
WILSON S C, BIEGALSKI S R, COATS R L. Computational modeling of coupled thermomechanical and neutron transport behavior in a Godiva-like nuclear assembly[J]. Nuclear Science and Engineering, 2007, 157(3): 344-353. doi: 10.13182/NSE06-28
|
[5] |
梁文峰,邱东,杨成德,等. 燃料元件在热冲击下基于ANSYS的动态响应仿真[J]. 科学技术与工程,2014, 14(20): 51-55. doi: 10.3969/j.issn.1671-1815.2014.20.011
|
[6] |
KADIOGLU S Y, KNOLL D A, DE OLIVEIRA C. Multiphysics analysis of spherical fast burst reactors[J]. Nuclear Science and Engineering, 2009, 163(2): 132-143. doi: 10.13182/NSE09-07
|
[7] |
邱东. 快中子脉冲反应堆爆发脉冲时堆体应力分布的数值模拟[J]. 核动力工程,2004, 25(1): 74-78+82. doi: 10.3969/j.issn.0258-0926.2004.01.018
|
[8] |
陈硕,郑春,杜金峰. 高产额脉冲堆爆发脉冲过程力学特性数值模拟[J]. 强激光与粒子束,2019, 31(5): 056004. doi: 10.11884/HPLPB201931.180347
|
[9] |
马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196. doi: 10.13832/j.jnpe.2020.04.0191
|
[10] |
张驰,周琦,朱庆福,等. 金属核燃料系统瞬态特性分析研究[J]. 原子能科学技术,2016, 50(12): 2170-2174. doi: 10.7538/yzk.2016.50.12.2170
|
[11] |
陈硕. 快中子脉冲堆安全限值与限制条件分析[D]. 绵阳: 中国工程物理研究院, 2019.
|
[12] |
高辉,钟力晗,梁文峰,等. 基于反应性温度系数的金属型脉冲堆波形计算[J]. 原子能科学技术,2017, 51(5): 798-802. doi: 10.7538/yzk.2017.51.05.0798
|
[13] |
CANAAN R E. Dynamic response of a pulse-heated, thick-walled, hollow sphere: validation of code numerics: UCRL-ID-137326[R]. Washington: USDOE Office of Defense Programs, 2000.
|
[14] |
PETERSON R E, NEWBY G A. Lady Godiva: an unreflected uranium-235 critical assembly: LA-1614[R]. Los Alamos: Los Alamos National Laboratory, 1953.
|
[15] |
WIMETT T F, ENGLE L B, GRAVES G A, et al. Time behavior of Godiva through prompt critical[R]. Los Alamos: Los Alamos Scientific Laboratory, 1956: 1-39.
|
[16] |
AUFIERO M, FIORINA C, LAUREAU A, et al. Serpent--OpenFOAM coupling in transient mode: of a Godiva prompt critical burst[C]//Proceedings of Joint International Conference on Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method. Nashville: ANS, 2015.
|
[17] |
WANG Y Q, SCHUNERT S, ORTENSI J, et al. Demonstration of MAMMOTH strongly-coupled multiphysics simulation with the Godiva benchmark problem[C]//International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. Jeju, Korea: Idaho National Lab., 2017.
|