Advance Search
Volume 43 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Guo Shuwei, Chen ZhenPing, Jiang Xinbiao, Li Da, Zhang Xinyi, Wang Lipeng, Hu Tianliang, Xie Jinsen, Yu Tao. Study on Neutronic/Thermal-Mechanical Coupling Calculation Method for Fast-neutron Pulse Reactor with Metallic Nuclear Fuel[J]. Nuclear Power Engineering, 2022, 43(4): 31-37. doi: 10.13832/j.jnpe.2022.04.0031
Citation: Guo Shuwei, Chen ZhenPing, Jiang Xinbiao, Li Da, Zhang Xinyi, Wang Lipeng, Hu Tianliang, Xie Jinsen, Yu Tao. Study on Neutronic/Thermal-Mechanical Coupling Calculation Method for Fast-neutron Pulse Reactor with Metallic Nuclear Fuel[J]. Nuclear Power Engineering, 2022, 43(4): 31-37. doi: 10.13832/j.jnpe.2022.04.0031

Study on Neutronic/Thermal-Mechanical Coupling Calculation Method for Fast-neutron Pulse Reactor with Metallic Nuclear Fuel

doi: 10.13832/j.jnpe.2022.04.0031
  • Received Date: 2021-08-19
  • Accepted Date: 2021-11-17
  • Rev Recd Date: 2021-11-17
  • Available Online: 2022-08-12
  • Publish Date: 2022-08-04
  • In order to ensure the operational safety of the fast-neutron pulse reactor and prevent the supercritical pulse from causing physical damage to the material, it is necessary to simulate and analyze the pulse operating conditions of the fast-neutron pulse reactor. In this study, for the fast-neutron pulse reactor with metallic nuclear fuel, the neutronic/thermal-mechanical coupling calculation and analysis of Godiva-I pulse reactor are carried out based on the point reactor dynamics method, Monte Carlo method and finite element mechanics method. The calculation results show that the reactivity temperature coefficient and fission rate are in good agreement with the experimental values, and the reactivity, temperature rise, surface displacement and surface stress are consistent with the actual situation. Therefore, the "neutronic/thermal-mechanical" coupling calculation method established in this paper can be applied to the analysis and calculation of the fast-neutron pulse reactor with metallic nuclear fuel, and has certain reliability.

     

  • loading
  • [1]
    贺仁辅, 邓门才. 快中子临界装置和脉冲堆实验物理[M]. 北京: 国防工业出版社, 2012: 34-37
    [2]
    钟力晗,高辉,梁文峰,等. 金属型脉冲堆惯性效应计算[J]. 强激光与粒子束,2017, 29(9): 096003. doi: 10.11884/HPLPB201729.170031
    [3]
    梁文峰,谢奇林,高辉,等. 基于波形逼近的快中子脉冲堆耦合计算[J]. 原子能科学技术,2016, 50(11): 2018-2022.
    [4]
    WILSON S C, BIEGALSKI S R, COATS R L. Computational modeling of coupled thermomechanical and neutron transport behavior in a Godiva-like nuclear assembly[J]. Nuclear Science and Engineering, 2007, 157(3): 344-353. doi: 10.13182/NSE06-28
    [5]
    梁文峰,邱东,杨成德,等. 燃料元件在热冲击下基于ANSYS的动态响应仿真[J]. 科学技术与工程,2014, 14(20): 51-55. doi: 10.3969/j.issn.1671-1815.2014.20.011
    [6]
    KADIOGLU S Y, KNOLL D A, DE OLIVEIRA C. Multiphysics analysis of spherical fast burst reactors[J]. Nuclear Science and Engineering, 2009, 163(2): 132-143. doi: 10.13182/NSE09-07
    [7]
    邱东. 快中子脉冲反应堆爆发脉冲时堆体应力分布的数值模拟[J]. 核动力工程,2004, 25(1): 74-78+82. doi: 10.3969/j.issn.0258-0926.2004.01.018
    [8]
    陈硕,郑春,杜金峰. 高产额脉冲堆爆发脉冲过程力学特性数值模拟[J]. 强激光与粒子束,2019, 31(5): 056004. doi: 10.11884/HPLPB201931.180347
    [9]
    马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196. doi: 10.13832/j.jnpe.2020.04.0191
    [10]
    张驰,周琦,朱庆福,等. 金属核燃料系统瞬态特性分析研究[J]. 原子能科学技术,2016, 50(12): 2170-2174. doi: 10.7538/yzk.2016.50.12.2170
    [11]
    陈硕. 快中子脉冲堆安全限值与限制条件分析[D]. 绵阳: 中国工程物理研究院, 2019.
    [12]
    高辉,钟力晗,梁文峰,等. 基于反应性温度系数的金属型脉冲堆波形计算[J]. 原子能科学技术,2017, 51(5): 798-802. doi: 10.7538/yzk.2017.51.05.0798
    [13]
    CANAAN R E. Dynamic response of a pulse-heated, thick-walled, hollow sphere: validation of code numerics: UCRL-ID-137326[R]. Washington: USDOE Office of Defense Programs, 2000.
    [14]
    PETERSON R E, NEWBY G A. Lady Godiva: an unreflected uranium-235 critical assembly: LA-1614[R]. Los Alamos: Los Alamos National Laboratory, 1953.
    [15]
    WIMETT T F, ENGLE L B, GRAVES G A, et al. Time behavior of Godiva through prompt critical[R]. Los Alamos: Los Alamos Scientific Laboratory, 1956: 1-39.
    [16]
    AUFIERO M, FIORINA C, LAUREAU A, et al. Serpent--OpenFOAM coupling in transient mode: of a Godiva prompt critical burst[C]//Proceedings of Joint International Conference on Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method. Nashville: ANS, 2015.
    [17]
    WANG Y Q, SCHUNERT S, ORTENSI J, et al. Demonstration of MAMMOTH strongly-coupled multiphysics simulation with the Godiva benchmark problem[C]//International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. Jeju, Korea: Idaho National Lab., 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (349) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return