Advance Search
Volume 43 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Wang Yanpei, Liu Zhenhai, Qi Feipeng, Tang Changbing, Zhang Kun, Zhou Yi, Wang Peng, Yu Lin. Comparative Validation of Three Dimensional Fuel Rod Fine Simulation Software FUPAC3D and FUPAC[J]. Nuclear Power Engineering, 2022, 43(4): 46-52. doi: 10.13832/j.jnpe.2022.04.0046
Citation: Wang Yanpei, Liu Zhenhai, Qi Feipeng, Tang Changbing, Zhang Kun, Zhou Yi, Wang Peng, Yu Lin. Comparative Validation of Three Dimensional Fuel Rod Fine Simulation Software FUPAC3D and FUPAC[J]. Nuclear Power Engineering, 2022, 43(4): 46-52. doi: 10.13832/j.jnpe.2022.04.0046

Comparative Validation of Three Dimensional Fuel Rod Fine Simulation Software FUPAC3D and FUPAC

doi: 10.13832/j.jnpe.2022.04.0046
  • Received Date: 2021-08-19
  • Accepted Date: 2022-03-14
  • Rev Recd Date: 2021-12-13
  • Publish Date: 2022-08-04
  • To verify the function and accuracy of the three-dimensional fuel rod fine simulation software FUPAC3D based on the three-dimensional finite element analysis platform in analyzing and evaluating the radiation-thermal -mechanical coupling behavior of PWR fuel rods, in this paper, the thermal model, fuel rod mechanical model, fission gas release model and corrosion model adopted by the three-dimensional FUPAC3D software are given. Taking the typical fuel rod parameters and operating conditions of HPR1000 as input parameters, the three-dimensional FUPAC3D software and the 1.5-dimensional FUPAC software that has been applied in engineering are used for modeling and analysis. The calculation results of two kinds of software in the temperature of pellet and cladding, the stress and strain of cladding, and the gap width between pellet and cladding are compared. The results show that FUPAC3D software and FUPAC software have considerable accuracy, and FUPAC3D software has the fine ability to simulate the radiation-thermal-mechanical coupling behavior of PWR fuel rods.

     

  • loading
  • [1]
    BERNA G A, BEYER G A, DAVIS K L, et al. FRAPCON-3: a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup: NUREG/CR-6534-Vol. 2-PNNL-11513[R]. Washington: U. S. Nuclear Regulatory Commission, 1997.
    [2]
    LASSMANN K. TRANSURANUS: a fuel rod analysis code ready for use[J]. Journal of Nuclear Materials, 1992, 188: 295-302. doi: 10.1016/0022-3115(92)90487-6
    [3]
    ROSSITER G D, COOK P, WESTON R. Isotopic modelling using the ENIGMA-B fuel performance code[R]. Lake Windermere, UK: IAEA, 2000
    [4]
    GARNIER C, MAILHE P, SONTHEIMER F, et al. Validation of advanced fuel performance COPERNIC3 code on AREVA global database up to 100 GWd/tM[C]//Proceedings of TopFuel 2009, Paris, France: WRFPM, 2009
    [5]
    SUZUKI M, UDAGAWA Y, SAITOU H. Light water reactor fuel analysis code FEMAXI-7; model and structure: JAEA-Data/Code-2010-035[R]. Tokai, Ibaraki, Japan: Japan Atomic Energy Agency, 2011
    [6]
    CAYET N, BARON D, BEGUIN S. CYRANO3: EDG’s fuel rod behaviour code presentation and overview of its qualification on HRP and various other experiments[C]//Proceedings of Thermal Performance of High Burn-Up LWR Fuel. Tokyo: Japan Atomic Energy Agency, 1998: 323.
    [7]
    周毅,陈平,张林,等. 压水堆燃料棒辐照行为模型研究[J]. 核动力工程,2014, 35(S2): 200-202.
    [8]
    涂晓兰,柴晓明,尹强,等. 燃料棒性能分析软件FUPAC中燃料棒径向功率密度分布模型研发[J]. 核动力工程,2014, 35(S2): 197-199.
    [9]
    王坤,张坤,邢硕,等. 数值拟合方法评价燃料芯块制造参数对燃料棒性能的影响[J]. 核动力工程,2021, 42(3): 80-84.
    [10]
    邢硕,张坤,陈平,等. 燃料棒性能分析程序FUPAC V2.0的研发与验证[J]. 原子能科学技术,2021, 55(11): 2048-2053. doi: 10.7538/yzk.2020.youxian.0925
    [11]
    KHVOSTOV G, MIKITYUK K, ZIMMERMANN M A. A model for fission gas release and gaseous swelling of the uranium dioxide fuel coupled with the FALCON code[J]. Nuclear Engineering and Design, 2011, 241(8): 2983-3007. doi: 10.1016/j.nucengdes.2011.06.020
    [12]
    VAN UFFELEN P, HALES J, LI W, et al. A review of fuel performance modelling[J]. Journal of Nuclear Materials, 2019, 516: 373-412. doi: 10.1016/j.jnucmat.2018.12.037
    [13]
    WILLIAMSON R L, GAMBLE K A, PEREZ D M, et al. Validating the BISON fuel performance code to integral LWR experiments[J]. Nuclear Engineering and Design, 2016, 301: 232-244. doi: 10.1016/j.nucengdes.2016.02.020
    [14]
    HE Y N, CHEN P, WU Y W, et al. Preliminary evaluation of U3Si2-FeCrAl fuel performance in light water reactors through a multi-physics coupled way[J]. Nuclear Engineering and Design, 2018, 328: 27-35. doi: 10.1016/j.nucengdes.2017.12.019
    [15]
    邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439. doi: 10.7538/yzk.2020.youxian.0607
    [16]
    邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能分析程序开发与验证[J]. 原子能科学技术,2021, 55(7): 1296-1303. doi: 10.7538/yzk.2020.youxian.0515
    [17]
    WILLIAMSON R L. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior[J]. Journal of Nuclear Materials, 2011, 415(1): 74-83. doi: 10.1016/j.jnucmat.2011.05.044
    [18]
    唐昌兵,焦拥军,陈平,等. 燃料棒辐照-热-力耦合行为的精细化数值模拟研究[J]. 核动力工程,2017, 38(6): 180-184.
    [19]
    路怀玉,唐昌兵,李垣明,等. 热管堆燃料棒辐照-热-力学行为的数值研究[J]. 冶金管理,2020(5): 38-39.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (330) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return