Advance Search
Volume 43 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Shen Jiangfei, Wang Shuangfei, Huang Lijun, Ling Shuanghan, Zhang Sheng. Research on Multi-parameter Synchronous Monitoring Technology of Nuclear Power Plant Equipment Status[J]. Nuclear Power Engineering, 2022, 43(4): 168-173. doi: 10.13832/j.jnpe.2022.04.0168
Citation: Shen Jiangfei, Wang Shuangfei, Huang Lijun, Ling Shuanghan, Zhang Sheng. Research on Multi-parameter Synchronous Monitoring Technology of Nuclear Power Plant Equipment Status[J]. Nuclear Power Engineering, 2022, 43(4): 168-173. doi: 10.13832/j.jnpe.2022.04.0168

Research on Multi-parameter Synchronous Monitoring Technology of Nuclear Power Plant Equipment Status

doi: 10.13832/j.jnpe.2022.04.0168
  • Received Date: 2021-06-13
  • Accepted Date: 2022-01-06
  • Rev Recd Date: 2021-12-24
  • Publish Date: 2022-08-04
  • The stable operation status and long-term operation data accumulation of nuclear power plant equipment have established a good data foundation for realizing data-driven intelligent monitoring of equipment status. In this paper, an intelligent monitoring method of equipment condition based on multi-parameter correlation is proposed, which includes three steps: modeling, training and inference, and a data-driven intelligent monitoring and early warning model of equipment condition is established. First, the system equipment monitoring parameters, parameter monitoring contents and correlation are identified and analyzed, and the correlation model of monitoring parameters is designed and established. Second, the historical data of normal operation of the equipment are collected and selected as training data, and the correlation model is trained based on BP feed forward neural network; Finally, the measured values of the monitoring parameters of the equipment are collected in real time, and the predicted values of each parameter are inferred based on the model, and the deviation between the measured value and the predicted value is monitored, and an early warning message is given when the deviation exceeds a predetermined threshold. This paper takes the heat exchanger and main feed pump of a power plant as an example to model and verify. The results show that the monitoring model proposed in this paper can effectively monitor the small and abnormal changes of equipment parameters synchronously, give early warning against early abnormalities, and maintain a very low false alarm rate.

     

  • loading
  • [1]
    刘勤明. 基于状态监测信息的设备在线健康预测及维护优化研究[D]. 上海: 上海交通大学, 2014.
    [2]
    RUSAW R. Guideline for online monitoring of nuclear power plants: volume 2[R]. U.S.: EPRI, 2011.
    [3]
    赵倩. 变电站设备监测系统及温度预测算法的研究[D]. 保定: 华北电力大学, 2015.
    [4]
    李景. 基于神经网络的火电厂设备状态实时监测系统设计[D]. 北京: 华北电力大学(北京), 2018.
    [5]
    赵畅畅. 船用机械设备润滑磨损状态监测诊断研究[D]. 广州: 华南理工大学, 2018.
    [6]
    王丹. 图像识别技术在配网设备状态监测中的应用研究[D]. 北京: 华北电力大学(北京), 2018.
    [7]
    王博维,刘爱莲,杜景琦. 基于并行神经网络的水电机组振动状态劣化研究[J]. 电力科学与工程,2018, 34(9): 59-66. doi: 10.3969/j.ISSN.1672-0792.2018.09.010
    [8]
    朱少民,夏虹,彭彬森,等. 基于PCA的主泵传感器状态监测模型[J]. 核动力工程,2020, 41(3): 170-176.
    [9]
    吴天昊,刘韬,施海宁,等. 基于核主元分析法的核电厂设备状态监测技术研究[J]. 核动力工程,2020, 41(5): 132-137.
    [10]
    何鹏,陈静,李小芬,等. 核电厂堆腔冷却状态监测研究[J]. 核动力工程,2020, 41(5): 94-98.
    [11]
    李翔,简捷,李海,等. 基于国产化PXI模块的松脱部件监测系统软件开发[J]. 核动力工程,2018, 39(3): 171-175.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (341) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return