Advance Search
Volume 43 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Wen Qinglong, Zeng Xiehu, Du Qiang, Chen Zhiqiang, Zhang Ruiqian, Du Peinan. Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure[J]. Nuclear Power Engineering, 2022, 43(5): 34-42. doi: 10.13832/j.jnpe.2022.05.0034
Citation: Wen Qinglong, Zeng Xiehu, Du Qiang, Chen Zhiqiang, Zhang Ruiqian, Du Peinan. Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure[J]. Nuclear Power Engineering, 2022, 43(5): 34-42. doi: 10.13832/j.jnpe.2022.05.0034

Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure

doi: 10.13832/j.jnpe.2022.05.0034
  • Received Date: 2021-09-13
  • Rev Recd Date: 2021-10-20
  • Publish Date: 2022-10-12
  • Chromium (Cr) - coated zirconium alloy cladding is one of the most promising new cladding materials for accident resistant fuel (ATF). The study of bubble dynamics on the surface of this new material is helpful to evaluate whether it has better heat transfer performance. experiments are carried out on Cr-coated zirconium alloy cladding prepared by different process methods in a pool boiling experimental facility for Cr-coated zirconium alloy cladding under normal pressure. The effects of surface states such as roughness on bubble generation, growth and departure behaviors are investigated.The results show that the bubble contact angle is related to the surface roughness of Cr coating. The larger the roughness, the smaller the bubble contact angle; The bubble departure diameter of the four Cr-coated zirconium alloy cladding samples prepared under different coating processes ranges from 1.256~1.446 mm, and the bubble departure frequency ranges from 29.99~50.97 Hz; the bubble departure diameter is negatively correlated with the roughness, and the departure frequency is positively correlated with the roughness; The deviation between the bubble departure diameter prediction model and the experimental data is ±6%, and the deviation between the departure frequency prediction model and the experimental data is ±3%.

     

  • loading
  • [1]
    TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
    [2]
    TERRANI K A, YANG Y, KIM Y J, et al. Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation[J]. Journal of Nuclear Materials, 2015, 465: 488-498. doi: 10.1016/j.jnucmat.2015.06.019
    [3]
    HIRAYAMA H, KAWAKUBO T, GOTO A, et al. Corrosion behavior of silicon carbide in 290℃ water[J]. Journal of the American Ceramic Society, 1989, 72(11): 2049-2053. doi: 10.1111/j.1151-2916.1989.tb06029.x
    [4]
    TANG C C, STUEBER M, SEIFERT H J, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings[J]. Corrosion Reviews, 2017, 35(3): 141-165. doi: 10.1515/corrrev-2017-0010
    [5]
    BRACHET J C, GUILBERT T, LESAUX M, et al. Behavior of Cr-coated m5 claddings during and after high temperature steam oxidationfrom 800℃ up to 1500℃[C]. Prague: Topfue, 2018: 250-257.
    [6]
    BRACHET J C, DUMERVAL M, LEZAUD-CHAILLIOUX V, et al. Behavior of chromium coated M5TM claddings under LOCA conditions[C]//WRFPM 2017 Water Reactor Fuel Performance Meeting. Jeju Island: HAL, 2017.
    [7]
    BRACHET J C, LE SAUX M, LEZAUD-CHAILLIOUX V, et al. Behavior under LOCA conditions of enhanced accident tolerant chromium coated zircaloy-4 claddings[C]//LWR Fuel with Enhanced Safety and Performance Meeting. Boise: HAL, 2016: 1173-1178.
    [8]
    CORTY C. Surface variables in nucleate boiling[C].US: American Institute of Chemical Engineering, 1955: 1-12.
    [9]
    GRIFFITH P, WALLIS J D. The role of surface conditions in nucleate boiling: NP-7205[R]. Cambridge: Massachusetts Institute of Technology, Division of Industrial Cooperation, 1958.
    [10]
    CLARK H B, STRENGE P S, WESTWATER J W. Active sites for nucleate boiling[J]. Chemical Engineering Progress, 1959, 55(29): 103-110.
    [11]
    STEPHAN K. Mechanismus und Modellgesetz des Wärmeübergangs bei der Blasenverdampfung[J]. Chemie Ingenieur Technik, 1963, 35(11): 775-784. doi: 10.1002/cite.330351105
    [12]
    KIM J, JUN S, LAKSNARAIN R, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J]. International Journal of Heat and Mass Transfer, 2016, 101: 992-1002. doi: 10.1016/j.ijheatmasstransfer.2016.05.067
    [13]
    EL-GENK M S, SUSZKO A, ALI A F. Effects of surface roughness and inclination angle on nucleate boiling of PF-5060 dielectric liquid on copper[C]//ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego: American Society of Mechanical Engineers, 2013.
    [14]
    SON H H, SEO G H, JEONG U, et al. Capillary wicking effect of a Cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 113: 115-128. doi: 10.1016/j.ijheatmasstransfer.2017.05.055
    [15]
    SON H H, CHO Y S, KIM S J. Dynamic wetting characteristics attributable for pool boiling heat transfer of FeCrAl-and Cr-layered vertical tubes[C]// Transactions of the Korean Nuclear Society Spring Meeting. Jeju: Korean Nuclear Society, 2017: 1-4.
    [16]
    JO H S, AN S, PARK H G, et al. Enhancement of critical heat flux and superheat through controlled wettability of cuprous-oxide fractal-like nanotextured surfaces in pool boiling[J]. International Journal of Heat and Mass Transfer, 2017, 107: 105-111. doi: 10.1016/j.ijheatmasstransfer.2016.11.029
    [17]
    甘金来. 图像边缘检测算法的比较研究[D]. 成都: 电子科技大学, 2005.
    [18]
    FRITZ W. Maximum volume of vapor bubbles[J]. Physikalische Zeitschrift, 1935, 36: 379-354.
    [19]
    GRIFFITH P. Bubble growth rates in boiling: NP-6188[R]. Cambridge: Massachusetts Institute of Technology, 1956.
    [20]
    HOLLAND P W, WELSCH R E. Robust regression using iteratively reweighted least-squares[J]. Communications in Statistics-Theory and Methods, 1977, 6(9): 813-827. doi: 10.1080/03610927708827533
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (160) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return