Citation: | Wen Qinglong, Zeng Xiehu, Du Qiang, Chen Zhiqiang, Zhang Ruiqian, Du Peinan. Experimental Study on Saturated Pool Boiling Bubble Behavior of ATF Chromium Coated Zirconium Alloy Cladding at Atmospheric Pressure[J]. Nuclear Power Engineering, 2022, 43(5): 34-42. doi: 10.13832/j.jnpe.2022.05.0034 |
[1] |
TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
|
[2] |
TERRANI K A, YANG Y, KIM Y J, et al. Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation[J]. Journal of Nuclear Materials, 2015, 465: 488-498. doi: 10.1016/j.jnucmat.2015.06.019
|
[3] |
HIRAYAMA H, KAWAKUBO T, GOTO A, et al. Corrosion behavior of silicon carbide in 290℃ water[J]. Journal of the American Ceramic Society, 1989, 72(11): 2049-2053. doi: 10.1111/j.1151-2916.1989.tb06029.x
|
[4] |
TANG C C, STUEBER M, SEIFERT H J, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings[J]. Corrosion Reviews, 2017, 35(3): 141-165. doi: 10.1515/corrrev-2017-0010
|
[5] |
BRACHET J C, GUILBERT T, LESAUX M, et al. Behavior of Cr-coated m5 claddings during and after high temperature steam oxidationfrom 800℃ up to 1500℃[C]. Prague: Topfue, 2018: 250-257.
|
[6] |
BRACHET J C, DUMERVAL M, LEZAUD-CHAILLIOUX V, et al. Behavior of chromium coated M5TM claddings under LOCA conditions[C]//WRFPM 2017 Water Reactor Fuel Performance Meeting. Jeju Island: HAL, 2017.
|
[7] |
BRACHET J C, LE SAUX M, LEZAUD-CHAILLIOUX V, et al. Behavior under LOCA conditions of enhanced accident tolerant chromium coated zircaloy-4 claddings[C]//LWR Fuel with Enhanced Safety and Performance Meeting. Boise: HAL, 2016: 1173-1178.
|
[8] |
CORTY C. Surface variables in nucleate boiling[C].US: American Institute of Chemical Engineering, 1955: 1-12.
|
[9] |
GRIFFITH P, WALLIS J D. The role of surface conditions in nucleate boiling: NP-7205[R]. Cambridge: Massachusetts Institute of Technology, Division of Industrial Cooperation, 1958.
|
[10] |
CLARK H B, STRENGE P S, WESTWATER J W. Active sites for nucleate boiling[J]. Chemical Engineering Progress, 1959, 55(29): 103-110.
|
[11] |
STEPHAN K. Mechanismus und Modellgesetz des Wärmeübergangs bei der Blasenverdampfung[J]. Chemie Ingenieur Technik, 1963, 35(11): 775-784. doi: 10.1002/cite.330351105
|
[12] |
KIM J, JUN S, LAKSNARAIN R, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J]. International Journal of Heat and Mass Transfer, 2016, 101: 992-1002. doi: 10.1016/j.ijheatmasstransfer.2016.05.067
|
[13] |
EL-GENK M S, SUSZKO A, ALI A F. Effects of surface roughness and inclination angle on nucleate boiling of PF-5060 dielectric liquid on copper[C]//ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego: American Society of Mechanical Engineers, 2013.
|
[14] |
SON H H, SEO G H, JEONG U, et al. Capillary wicking effect of a Cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 113: 115-128. doi: 10.1016/j.ijheatmasstransfer.2017.05.055
|
[15] |
SON H H, CHO Y S, KIM S J. Dynamic wetting characteristics attributable for pool boiling heat transfer of FeCrAl-and Cr-layered vertical tubes[C]// Transactions of the Korean Nuclear Society Spring Meeting. Jeju: Korean Nuclear Society, 2017: 1-4.
|
[16] |
JO H S, AN S, PARK H G, et al. Enhancement of critical heat flux and superheat through controlled wettability of cuprous-oxide fractal-like nanotextured surfaces in pool boiling[J]. International Journal of Heat and Mass Transfer, 2017, 107: 105-111. doi: 10.1016/j.ijheatmasstransfer.2016.11.029
|
[17] |
甘金来. 图像边缘检测算法的比较研究[D]. 成都: 电子科技大学, 2005.
|
[18] |
FRITZ W. Maximum volume of vapor bubbles[J]. Physikalische Zeitschrift, 1935, 36: 379-354.
|
[19] |
GRIFFITH P. Bubble growth rates in boiling: NP-6188[R]. Cambridge: Massachusetts Institute of Technology, 1956.
|
[20] |
HOLLAND P W, WELSCH R E. Robust regression using iteratively reweighted least-squares[J]. Communications in Statistics-Theory and Methods, 1977, 6(9): 813-827. doi: 10.1080/03610927708827533
|