Advance Search
Volume 43 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Jiao Yongjun, Yu Junchong, Zhou Yi, Li Yuanming, Chen Ping, Duan Zhengang. Research and Development Progress and Application Prospect of Nuclear Fuels for Commercial Pressurized Water Reactors[J]. Nuclear Power Engineering, 2022, 43(6): 1-7. doi: 10.13832/j.jnpe.2022.06.0001
Citation: Jiao Yongjun, Yu Junchong, Zhou Yi, Li Yuanming, Chen Ping, Duan Zhengang. Research and Development Progress and Application Prospect of Nuclear Fuels for Commercial Pressurized Water Reactors[J]. Nuclear Power Engineering, 2022, 43(6): 1-7. doi: 10.13832/j.jnpe.2022.06.0001

Research and Development Progress and Application Prospect of Nuclear Fuels for Commercial Pressurized Water Reactors

doi: 10.13832/j.jnpe.2022.06.0001
  • Received Date: 2022-07-04
  • Rev Recd Date: 2022-08-16
  • Publish Date: 2022-12-14
  • Pressurized water reactor (PWR) is the main reactor type of nuclear power plant at present, and nuclear fuel is the energy source of reactor and the main source of fission products, which is related to the economy and safety of nuclear power plant. This paper summarizes and evaluates the performance characteristics, technical status and prospects of doped UO2 fuel, high density fuel, micro-capsulated fuel and metal fuel currently developed for commercial PWR applications. Among these fuels, the large grain fuel has high technology maturity and is expected to be commercially available in PWR in the near future; the corrosion and oxidation of high density fuel and metal fuel in high temperature water and the behavior under accidents still need to be studied and solved; micro-encapsulated fuel with extremely safety is more suitable for small reactors for special purposes. Research and development of advanced fuel assemblies, design criteria and high fidelity performance analysis technology shall be carried out in coordination to maximize the reliability and high burnup advantages of new fuels.

     

  • loading
  • [1]
    庞华,辛勇,岳慧芳,等. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报,2022, 36(4): 5-12.
    [2]
    COOPER M W D, STANEK C R, ANDERSSON D A. The role of dopant charge state on defect chemistry and grain growth of doped UO2[J]. Acta Materialia, 2018, 150: 403-413. doi: 10.1016/j.actamat.2018.02.020
    [3]
    MIDDLEBURGH S C, GRIMES R W, DESAI K H, et al. Swelling due to fission products and additives dissolved within the uranium dioxide lattice[J]. Journal of Nuclear Materials, 2012, 427(1-3): 359-363. doi: 10.1016/j.jnucmat.2012.03.037
    [4]
    OELRICH R, KAROUTAS Z, XU P, et al. Overview of Westinghouse lead EnCore accident tolerant fuel program[C]//Proceedings of Top Fuel 2019. Seattle, USA: American Nuclear Society, 2019: 192-196.
    [5]
    REBEYROLLE V, VIOUJARD N, SCHOLER A C, et al. PROtect fuel: the leading E-ATF solution delivered by framatome[C]//Proceedings of Top Fuel 2019. Seattle, USA: American Nuclear Society, 2019: 1-7.
    [6]
    Organisation for Economic Co-Operation and Development. State-of-the-art report on light water reactor accident-tolerant fuels: NEA No. 7317[R]. Organisation for Economic Co-Operation and Development, 2018: 209.
    [7]
    长谷川正义, 中岛良绩. 核反应堆材料手册[M]. 孙守仁, 等译. 北京: 中国原子能出版社, 1987: 187.
    [8]
    WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773K[J]. Journal of Nuclear Materials, 2015, 464: 275-280. doi: 10.1016/j.jnucmat.2015.04.031
    [9]
    METZGER K E. Analysis of pellet cladding interaction and creep of U3Si2 fuel for use in light water reactors[D]. Columbia: University of South Carolina, 2016.
    [10]
    FENG B, KARAHAN A, KAZIMI M S. Steady-state fuel behavior modeling of nitride fuels in FRAPCON-EP[J]. Journal of Nuclear Materials, 2012, 427(1-3): 30-38. doi: 10.1016/j.jnucmat.2012.04.011
    [11]
    HARP J M, LESSING P A, HOGGAN R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466: 728-738. doi: 10.1016/j.jnucmat.2015.06.027
    [12]
    VASUDEVAMURTHY G, NELSON A T. Uranium carbide properties for advanced fuel modeling – a review[J]. Journal of Nuclear Materials, 2022, 558: 153145. doi: 10.1016/j.jnucmat.2021.153145
    [13]
    HARP J M, LESSING P A, HOGGAN R E. Uranium silicide fabrication for use in LWR accident tolerant fuel[J]. Transactions of the American Nuclear Society, 2014, 110(1): 990-993.
    [14]
    REBAK R B. Alternative fuels to urania[M]. REBAK R B. Accident-Tolerant Materials for Light Water Reactor Fuels. Amsterdam: Elsevier, 2020: 157-170.
    [15]
    NELSON A T, MIGDISOV A, WOOD E S, et al. U3Si2 behavior in H2O environments: part II, pressurized water with controlled redox chemistry[J]. Journal of Nuclear Materials, 2018, 500: 81-91. doi: 10.1016/j.jnucmat.2017.12.026
    [16]
    KHATIB-RAHBAR M, KRALL A, YUAN Z, et al. Review of accident tolerant fuel concepts with implications to severe accident progression and radiological releases: NUREG/CR-7282, ERI/NRC 21-203[R]. Rockville: Energy Research, Inc., 2021.
    [17]
    Office of NEPA Policy and Compliance. CX-025514: Continuation of Work for the Accident Tolerant Fuel Project 2021-2025[EB/OL]. (2021-09-29) [2022-07-01]. https://www.energy.gov/sites/default/files/2022-03/CX-025514.pdf.
    [18]
    弗罗斯特B R T. 材料科学与技术丛书(第10A卷): 核材料[M]. 周邦新, 等译. 北京: 科学出版社, 1999: 195.
    [19]
    GONZALES A, WATKINS J K, WAGNER A R, et al. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: uranium silicide[J]. Journal of Nuclear Materials, 2021, 560: 153502.
    [20]
    ARAI Y. Nitride fuel[J]. Comprehensive Nuclear Materials, 2012, 3: 41-54.
    [21]
    JOLKKONEN M, MALKKI P, JOHNSON K, et al. Uranium nitride fuels in superheated steam[J]. Journal of Nuclear Science and technology, 2017, 54(5): 513-519. doi: 10.1080/00223131.2017.1291372
    [22]
    SNEAD L L, VENNERI F, KIM Y, et al. Fully ceramic microencapsulated fuels: a transformational technology for present and next generation reactors[J]. ANS Transactions, 2011, 104: 6.
    [23]
    李冠兴,周邦新,肖岷,等. 中国新一代核能核燃料总体发展战略研究[J]. 中国工程科学,2019, 21(1): 6-11.
    [24]
    BRAGG-SITTON S. Development of advanced accident-tolerant fuels for commercial LWRs[J]. Nuclear News, 2014, 57: 83-91.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (745) PDF downloads(243) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return