Citation: | Jiao Yongjun, Yu Junchong, Zhou Yi, Li Yuanming, Chen Ping, Duan Zhengang. Research and Development Progress and Application Prospect of Nuclear Fuels for Commercial Pressurized Water Reactors[J]. Nuclear Power Engineering, 2022, 43(6): 1-7. doi: 10.13832/j.jnpe.2022.06.0001 |
[1] |
庞华,辛勇,岳慧芳,等. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报,2022, 36(4): 5-12.
|
[2] |
COOPER M W D, STANEK C R, ANDERSSON D A. The role of dopant charge state on defect chemistry and grain growth of doped UO2[J]. Acta Materialia, 2018, 150: 403-413. doi: 10.1016/j.actamat.2018.02.020
|
[3] |
MIDDLEBURGH S C, GRIMES R W, DESAI K H, et al. Swelling due to fission products and additives dissolved within the uranium dioxide lattice[J]. Journal of Nuclear Materials, 2012, 427(1-3): 359-363. doi: 10.1016/j.jnucmat.2012.03.037
|
[4] |
OELRICH R, KAROUTAS Z, XU P, et al. Overview of Westinghouse lead EnCore accident tolerant fuel program[C]//Proceedings of Top Fuel 2019. Seattle, USA: American Nuclear Society, 2019: 192-196.
|
[5] |
REBEYROLLE V, VIOUJARD N, SCHOLER A C, et al. PROtect fuel: the leading E-ATF solution delivered by framatome[C]//Proceedings of Top Fuel 2019. Seattle, USA: American Nuclear Society, 2019: 1-7.
|
[6] |
Organisation for Economic Co-Operation and Development. State-of-the-art report on light water reactor accident-tolerant fuels: NEA No. 7317[R]. Organisation for Economic Co-Operation and Development, 2018: 209.
|
[7] |
长谷川正义, 中岛良绩. 核反应堆材料手册[M]. 孙守仁, 等译. 北京: 中国原子能出版社, 1987: 187.
|
[8] |
WHITE J T, NELSON A T, DUNWOODY J T, et al. Thermophysical properties of U3Si2 to 1773K[J]. Journal of Nuclear Materials, 2015, 464: 275-280. doi: 10.1016/j.jnucmat.2015.04.031
|
[9] |
METZGER K E. Analysis of pellet cladding interaction and creep of U3Si2 fuel for use in light water reactors[D]. Columbia: University of South Carolina, 2016.
|
[10] |
FENG B, KARAHAN A, KAZIMI M S. Steady-state fuel behavior modeling of nitride fuels in FRAPCON-EP[J]. Journal of Nuclear Materials, 2012, 427(1-3): 30-38. doi: 10.1016/j.jnucmat.2012.04.011
|
[11] |
HARP J M, LESSING P A, HOGGAN R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 2015, 466: 728-738. doi: 10.1016/j.jnucmat.2015.06.027
|
[12] |
VASUDEVAMURTHY G, NELSON A T. Uranium carbide properties for advanced fuel modeling – a review[J]. Journal of Nuclear Materials, 2022, 558: 153145. doi: 10.1016/j.jnucmat.2021.153145
|
[13] |
HARP J M, LESSING P A, HOGGAN R E. Uranium silicide fabrication for use in LWR accident tolerant fuel[J]. Transactions of the American Nuclear Society, 2014, 110(1): 990-993.
|
[14] |
REBAK R B. Alternative fuels to urania[M]. REBAK R B. Accident-Tolerant Materials for Light Water Reactor Fuels. Amsterdam: Elsevier, 2020: 157-170.
|
[15] |
NELSON A T, MIGDISOV A, WOOD E S, et al. U3Si2 behavior in H2O environments: part II, pressurized water with controlled redox chemistry[J]. Journal of Nuclear Materials, 2018, 500: 81-91. doi: 10.1016/j.jnucmat.2017.12.026
|
[16] |
KHATIB-RAHBAR M, KRALL A, YUAN Z, et al. Review of accident tolerant fuel concepts with implications to severe accident progression and radiological releases: NUREG/CR-7282, ERI/NRC 21-203[R]. Rockville: Energy Research, Inc., 2021.
|
[17] |
Office of NEPA Policy and Compliance. CX-025514: Continuation of Work for the Accident Tolerant Fuel Project 2021-2025[EB/OL]. (2021-09-29) [2022-07-01]. https://www.energy.gov/sites/default/files/2022-03/CX-025514.pdf.
|
[18] |
弗罗斯特B R T. 材料科学与技术丛书(第10A卷): 核材料[M]. 周邦新, 等译. 北京: 科学出版社, 1999: 195.
|
[19] |
GONZALES A, WATKINS J K, WAGNER A R, et al. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: uranium silicide[J]. Journal of Nuclear Materials, 2021, 560: 153502.
|
[20] |
ARAI Y. Nitride fuel[J]. Comprehensive Nuclear Materials, 2012, 3: 41-54.
|
[21] |
JOLKKONEN M, MALKKI P, JOHNSON K, et al. Uranium nitride fuels in superheated steam[J]. Journal of Nuclear Science and technology, 2017, 54(5): 513-519. doi: 10.1080/00223131.2017.1291372
|
[22] |
SNEAD L L, VENNERI F, KIM Y, et al. Fully ceramic microencapsulated fuels: a transformational technology for present and next generation reactors[J]. ANS Transactions, 2011, 104: 6.
|
[23] |
李冠兴,周邦新,肖岷,等. 中国新一代核能核燃料总体发展战略研究[J]. 中国工程科学,2019, 21(1): 6-11.
|
[24] |
BRAGG-SITTON S. Development of advanced accident-tolerant fuels for commercial LWRs[J]. Nuclear News, 2014, 57: 83-91.
|