Advance Search
Volume 43 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Zhang Zekai, Zhang Tingting, Yin Shasha, Yin Junlian, Wang Dezhong. Numerical Simulation of Gas-liquid Two-phase Separation in Vortex Separator[J]. Nuclear Power Engineering, 2022, 43(6): 201-208. doi: 10.13832/j.jnpe.2022.06.0201
Citation: Zhang Zekai, Zhang Tingting, Yin Shasha, Yin Junlian, Wang Dezhong. Numerical Simulation of Gas-liquid Two-phase Separation in Vortex Separator[J]. Nuclear Power Engineering, 2022, 43(6): 201-208. doi: 10.13832/j.jnpe.2022.06.0201

Numerical Simulation of Gas-liquid Two-phase Separation in Vortex Separator

doi: 10.13832/j.jnpe.2022.06.0201
  • Received Date: 2021-11-10
  • Rev Recd Date: 2022-06-07
  • Publish Date: 2022-12-14
  • For gas-liquid two-phase separation, traditional separators are either too large in volume or low in swirling intensity. So a new type of cyclone separator is proposed. Utilizing the reverse flow of vortex diode to form a high-strength swirling flow, a branch pipe is added above the swirling chamber. For the two-phase flow entering from the tangential inlet, due to the density difference and swirling flow, the gas phase will gather in the center and flow out of the separator from the upper branch pipe due to buoyancy, and the liquid phase will be distributed around the separator from the lower branch pipe due to gravity, thus realizing the separation of the two phases. The separators with different swirling chamber sizes and outlet shapes are calculated by numerical simulation. The simulation results show that under the working condition that the inlet flow is 0.5 t/h and the inlet air content is 1%~5%, the pressure at the control underflow port is the same as that at the inlet, the pressure difference between the overflow port and the inlet is 80~90 kPa, and the separation efficiency of the separator for bubbles with a diameter of 50 μm and 100 μm can be above 90%.

     

  • loading
  • [1]
    韩梦媛. 常用气液分离技术简介[J]. 科技致富向导,2014(12): 262. doi: 10.3969/j.issn.1007-1547.2014.12.264
    [2]
    张娜娜,阎昌琪,孙立成,等. 熔盐堆除气系统中气泡分离器运行特性[J]. 核动力工程,2014, 35(2): 137-140.
    [3]
    李华,尹俊连,张宁,等. 不同背压下旋流式气液分离器工作特性[J]. 核技术,2015, 38(1): 010603. doi: 10.11889/j.0253-3219.2015.hjs.38.010603
    [4]
    ZHAO L X, JIANG M H, XU B R, et al. Development of a new type high-efficient inner-cone hydrocyclone[J]. Chemical Engineering Research and Design, 2012, 90(12): 2129-2134. doi: 10.1016/j.cherd.2012.05.013
    [5]
    卜珺珺,曹军,杨晓林. 载人航天器气液分离技术综述[J]. 航天器工程,2014, 23(2): 124-131. doi: 10.3969/j.issn.1673-8748.2014.02.020
    [6]
    ROMERO J, SAMPAIO R. A numerical model for prediction of the air-core shape of hydrocyclone flow[J]. Mechanics Research Communications, 1999, 26(3): 379-384. doi: 10.1016/S0093-6413(99)00037-3
    [7]
    DATTA A, SOM S K. Numerical prediction of air core diameter, coefficient of discharge and spray cone angle of a swirl spray pressure nozzle[J]. International Journal of Heat and Fluid Flow, 2000, 21(4): 412-419. doi: 10.1016/S0142-727X(00)00003-5
    [8]
    ESCUE A, CUI J. Comparison of turbulence models in simulating swirling pipe flows[J]. Applied Mathematical Modelling, 2010, 34(10): 2840-2849. doi: 10.1016/j.apm.2009.12.018
    [9]
    曹寅. 涡流二极管的设计优化与实验研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2015.
    [10]
    KULKARNI A A, RANADE V V, RAJEEV R, et al. Pressure drop across vortex diodes: experiments and design guidelines[J]. Chemical Engineering Science, 2009, 64(6): 1285-1292. doi: 10.1016/j.ces.2008.10.060
    [11]
    钱雅兰,杨灵芳,张婷婷,等. 新型旋叶分离器分离特性与机理研究[J]. 核动力工程,2021, 42(2): 29-34. doi: 10.13832/j.jnpe.2021.02.0029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article Metrics

    Article views (197) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return