Citation: | Yuan Junjie, Liu Li, Gu Hanyang. Numerical Study on Heat Transfer Enhancement of Modified Wall in U-tube Steam Generator[J]. Nuclear Power Engineering, 2022, 43(S2): 94-99. doi: 10.13832/j.jnpe.2022.S2.0094 |
[1] |
吴宜灿,柏云清,宋勇,等. 中国铅基研究反应堆概念设计研究[J]. 核科学与工程,2014, 34(2): 201-208.
|
[2] |
魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
|
[3] |
张朝东. 蒸汽发生器管道破裂对铅基堆热工安全特性影响分析研究[D]. 合肥: 中国科学技术大学, 2018.
|
[4] |
SUROTO B J, TASHIRO M, HIRABAYASHI S, et al. Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface[J]. Journal of Thermal Science and Technology, 2013, 8(1): 294-308. doi: 10.1299/jtst.8.294
|
[5] |
BETZ A R, JENKINS J, KIM C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741. doi: 10.1016/j.ijheatmasstransfer.2012.10.080
|
[6] |
JO H, KIM S, PARK H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: controlled hydrophobic patterns on a hydrophilic substrate[J]. International Journal of Multiphase Flow, 2014, 62: 101-109. doi: 10.1016/j.ijmultiphaseflow.2014.02.006
|
[7] |
MOTEZAKKER A R, SADAGHIANI A K, ÇELIK S, et al. Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling[J]. International Journal of Heat and Mass Transfer, 2019, 135: 164-174. doi: 10.1016/j.ijheatmasstransfer.2019.01.139
|
[8] |
LIN Y H, LUO Y, LI J Y, et al. Heat transfer, pressure drop and flow patterns of flow boiling on heterogeneous wetting surface in a vertical narrow microchannel[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121158. doi: 10.1016/j.ijheatmasstransfer.2021.121158
|
[9] |
GONG S, CHENG P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2015, 80: 206-216. doi: 10.1016/j.ijheatmasstransfer.2014.08.092
|
[10] |
FENG Y, CHANG F C, HU Z T, et al. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM[J]. International Journal of Thermal Sciences, 2021, 163: 106814. doi: 10.1016/j.ijthermalsci.2020.106814
|
[11] |
ZHAO Z C, ZHANG J J, JIA D D, et al. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties[J]. Applied Thermal Engineering, 2017, 117: 417-426. doi: 10.1016/j.applthermaleng.2017.02.014
|
[12] |
YUAN J J, YE X, SHAN Y G. Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling[J]. International Journal of Multiphase Flow, 2021, 142: 103701. doi: 10.1016/j.ijmultiphaseflow.2021.103701
|
[13] |
YUAN J J, WENG Z H, SHAN Y G. Modelling of double bubbles coalescence behavior on different wettability walls using LBM method[J]. International Journal of Thermal Sciences, 2021, 168: 107037. doi: 10.1016/j.ijthermalsci.2021.107037
|
[14] |
GONG S, CHENG P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 64: 122-132. doi: 10.1016/j.ijheatmasstransfer.2013.03.058
|