Advance Search
Volume 43 Issue S2
Dec.  2022
Turn off MathJax
Article Contents
Yuan Junjie, Liu Li, Gu Hanyang. Numerical Study on Heat Transfer Enhancement of Modified Wall in U-tube Steam Generator[J]. Nuclear Power Engineering, 2022, 43(S2): 94-99. doi: 10.13832/j.jnpe.2022.S2.0094
Citation: Yuan Junjie, Liu Li, Gu Hanyang. Numerical Study on Heat Transfer Enhancement of Modified Wall in U-tube Steam Generator[J]. Nuclear Power Engineering, 2022, 43(S2): 94-99. doi: 10.13832/j.jnpe.2022.S2.0094

Numerical Study on Heat Transfer Enhancement of Modified Wall in U-tube Steam Generator

doi: 10.13832/j.jnpe.2022.S2.0094
  • Received Date: 2022-07-20
  • Rev Recd Date: 2022-08-30
  • Publish Date: 2022-12-31
  • In order to achieve better heat transfer effect and reduce the possibility of pipe rupture caused by heat transfer deterioration, based on the improved lattice Boltzmann method (LBM) phase transition heat transfer model, the bubble dynamics behavior and wall heat transfer performance of working medium in U-shaped heat transfer tube of steam generator were studied numerically. The results show that compared with the pure hydrophilic wall, the hydrophobic zone promotes bubble nucleation, and the wall with mixed wettability can significantly increase the boiling heat transfer. The wall with mixed wettability can increase the critical heat flux (CHF) and delay the occurrence of CHF point, which can effectively reduce the possibility of heat transfer deterioration. Generally speaking, the distance and number of hydrophobic points determine the growth state of bubbles, the best boiling heat transfer performance can be obtained if there is an optimal setting of hydrophobic points, and the ideal heat transfer wall can be obtained by selecting appropriate distance and number of hydrophobic points.

     

  • loading
  • [1]
    吴宜灿,柏云清,宋勇,等. 中国铅基研究反应堆概念设计研究[J]. 核科学与工程,2014, 34(2): 201-208.
    [2]
    魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
    [3]
    张朝东. 蒸汽发生器管道破裂对铅基堆热工安全特性影响分析研究[D]. 合肥: 中国科学技术大学, 2018.
    [4]
    SUROTO B J, TASHIRO M, HIRABAYASHI S, et al. Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface[J]. Journal of Thermal Science and Technology, 2013, 8(1): 294-308. doi: 10.1299/jtst.8.294
    [5]
    BETZ A R, JENKINS J, KIM C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741. doi: 10.1016/j.ijheatmasstransfer.2012.10.080
    [6]
    JO H, KIM S, PARK H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: controlled hydrophobic patterns on a hydrophilic substrate[J]. International Journal of Multiphase Flow, 2014, 62: 101-109. doi: 10.1016/j.ijmultiphaseflow.2014.02.006
    [7]
    MOTEZAKKER A R, SADAGHIANI A K, ÇELIK S, et al. Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling[J]. International Journal of Heat and Mass Transfer, 2019, 135: 164-174. doi: 10.1016/j.ijheatmasstransfer.2019.01.139
    [8]
    LIN Y H, LUO Y, LI J Y, et al. Heat transfer, pressure drop and flow patterns of flow boiling on heterogeneous wetting surface in a vertical narrow microchannel[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121158. doi: 10.1016/j.ijheatmasstransfer.2021.121158
    [9]
    GONG S, CHENG P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2015, 80: 206-216. doi: 10.1016/j.ijheatmasstransfer.2014.08.092
    [10]
    FENG Y, CHANG F C, HU Z T, et al. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM[J]. International Journal of Thermal Sciences, 2021, 163: 106814. doi: 10.1016/j.ijthermalsci.2020.106814
    [11]
    ZHAO Z C, ZHANG J J, JIA D D, et al. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties[J]. Applied Thermal Engineering, 2017, 117: 417-426. doi: 10.1016/j.applthermaleng.2017.02.014
    [12]
    YUAN J J, YE X, SHAN Y G. Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling[J]. International Journal of Multiphase Flow, 2021, 142: 103701. doi: 10.1016/j.ijmultiphaseflow.2021.103701
    [13]
    YUAN J J, WENG Z H, SHAN Y G. Modelling of double bubbles coalescence behavior on different wettability walls using LBM method[J]. International Journal of Thermal Sciences, 2021, 168: 107037. doi: 10.1016/j.ijthermalsci.2021.107037
    [14]
    GONG S, CHENG P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 64: 122-132. doi: 10.1016/j.ijheatmasstransfer.2013.03.058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (222) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return