Advance Search
Volume 43 Issue S2
Dec.  2022
Turn off MathJax
Article Contents
Ning Kewei, Song Shuai, Zhao Fulong, Xie lin, Tan Sichao. Core Design and Analysis of Physical and Thermal Characteristics of Lunar-based Nuclear Power Source[J]. Nuclear Power Engineering, 2022, 43(S2): 118-124. doi: 10.13832/j.jnpe.2022.S2.0118
Citation: Ning Kewei, Song Shuai, Zhao Fulong, Xie lin, Tan Sichao. Core Design and Analysis of Physical and Thermal Characteristics of Lunar-based Nuclear Power Source[J]. Nuclear Power Engineering, 2022, 43(S2): 118-124. doi: 10.13832/j.jnpe.2022.S2.0118

Core Design and Analysis of Physical and Thermal Characteristics of Lunar-based Nuclear Power Source

doi: 10.13832/j.jnpe.2022.S2.0118
  • Received Date: 2022-07-20
  • Rev Recd Date: 2022-09-19
  • Publish Date: 2022-12-31
  • Nuclear energy has the characteristics of long endurance and long life, which can provide reliable energy guarantee for lunar exploration. In this paper, the lunar-based 300kWt thermionic reactor scheme is proposed. The core physical characteristics are analyzed by Monte Carlo method, and the reactor thermal safety is studied by numerical simulation through the single channel flow and heat exchange calculation of the core. The calculation results show that the scheme can achieve 10 years’ lifetime and has sufficient shutdown depth, but there is positive temperature feedback in some temperature intervals, and it needs to rely on the fine control to meet the reactor safety requirements. In the lunar microgravity environment, when the coolant flow rate is not less than 0.9m/s, the hottest channel of the core does not exceed the thermal safety limit.

     

  • loading
  • [1]
    SIDDIQI A A. Beyond earth: a chronicle of deep space exploration, 1958-2016[M]. Washington: NASA, 2018: 341.
    [2]
    何宇豪,孟涛,卢瑞博,等. 空间核反应堆电源研究进展[J]. 上海航天,2019, 36(6): 126-133. doi: 10.19328/j.cnki.1006-1630.2019.06.018
    [3]
    POSTON D I, GIBSON M A, GODFROY T, et al. KRUSTY reactor design[J]. Nuclear Technology, 2020, 206(S1): S13-S30.
    [4]
    POSTON D I, GIBSON M A, SANCHEZ R G, et al. Results of the KRUSTY nuclear system test[J]. Nuclear Technology, 2020, 206(S1): S89-S117.
    [5]
    ZAKIROV V, PAVSHOOK V. Feasibility of the recent Russian nuclear electric propulsion concept: 2010[J]. Nuclear Engineering and Design, 2011, 241(5): 1529-1537. doi: 10.1016/j.nucengdes.2011.02.010
    [6]
    葛攀和,郭键,高剑,等. 星表核反应堆电源系统热工概念设计[J]. 载人航天,2017, 23(6): 784-789. doi: 10.3969/j.issn.1674-5825.2017.06.012
    [7]
    刘凯旋,张威震,解家春,等. 100kWe月面核电站方案研究[J]. 上海航天(中英文),2020, 37(2): 124-129.
    [8]
    DENG Y B, QIU B W, LU K L, et al. Performance evaluation and efficiency enhancement of a space thermionic fuel element for thermal energy conversion and utilization[J]. Applied Thermal Engineering, 2020, 173: 115237. doi: 10.1016/j.applthermaleng.2020.115237
    [9]
    STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005.
    [10]
    NIKITIN V P, OGLOBLIN B G, LUTOV Y I, et al. Program on the TOPAZ‐2 system preparation for flight tests[J]. AIP Conference Proceedings, 1993, 271(2): 741-746.
    [11]
    BENKE S M. Operational testing and thermal modeling of a TOPAZ-II single-cell thermionic fuel element test stand[J]. AIP Conference Proceedings, 1995, 324(1): 495-501.
    [12]
    钟武烨,赵守智,郑剑平,等. 空间热离子能量转换技术发展综述[J]. 深空探测学报,2020, 7(1): 47-60. doi: 10.15982/j.issn.2095-7777.2020.20200114001
    [13]
    NIKOLAEV Y V, KUCHEROV R Y, ERYOMIN S A, et al. Conductively coupled multi-cell TFE with electric heating pretest ability[J]. AIP Conference Proceedings, 1998, 420(1): 318-323.
    [14]
    STRECKERT H, BEGG L, PELESSONE D. Design of conductively coupled multi-cell thermionic fuel element[J]. AIP Conference Proceedings, 1999, 458(1): 1458-1463.
    [15]
    MARTINEZ M, STRECKERT H, IZHVANOV O, et al. Development and testing of a conductively coupled three cell thermionic converter[C]//1st International Energy Conversion Engineering Conference (IECEC). Portsmouth: American Institute of Aeronautics and Astronautics, 2003.
    [16]
    李东,李平岐,王珏,等. “长征五号”系列运载火箭总体方案与关键技术[J]. 深空探测学报(中英文),2021, 8(4): 335-343.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (158) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return