Advance Search
Volume 43 Issue S2
Dec.  2022
Turn off MathJax
Article Contents
Qu Shen, Cao Qixiang, Wu Xinghua, Yin Miao, Zhao Fengchao, Wang Xueren, Duan Xuru, Wang Xiaoyu. Method Study and Application for Neutronics Optimization of Solid Tritium Breeding Blanket of Fusion Reactor[J]. Nuclear Power Engineering, 2022, 43(S2): 143-149. doi: 10.13832/j.jnpe.2022.S2.0143
Citation: Qu Shen, Cao Qixiang, Wu Xinghua, Yin Miao, Zhao Fengchao, Wang Xueren, Duan Xuru, Wang Xiaoyu. Method Study and Application for Neutronics Optimization of Solid Tritium Breeding Blanket of Fusion Reactor[J]. Nuclear Power Engineering, 2022, 43(S2): 143-149. doi: 10.13832/j.jnpe.2022.S2.0143

Method Study and Application for Neutronics Optimization of Solid Tritium Breeding Blanket of Fusion Reactor

doi: 10.13832/j.jnpe.2022.S2.0143
  • Received Date: 2022-08-23
  • Rev Recd Date: 2022-10-10
  • Publish Date: 2022-12-31
  • This paper aims to improve the tritium breeding performance of the Tritium Breeding Blanket (TBB) of fusion reactors to better meet the tritium self-sufficiency. First, based on neutronics perturbation theory and simulated annealing algorithm, a new algorithm and program for neutronics optimization of TBB are developed. Second, the helium cooled solid blanket of China Fusion Engineering Test Reactor(CFETR) is selected to complete the demonstration application of the whole reactor neutronics performance optimization. Finally, the 3D finite element check of thermal, fluid and structure is carried out for the optimized blanket scheme. The results show that: ① The optimization algorithm proposed in this paper has better optimization effect and higher optimization efficiency than the traditional blanket neutronics optimization algorithm; ② The intelligent optimization program developed in this paper can better meet the needs of neutronics optimization and design of the fusion reactor blanket, and provide the theoretical basis of algorithm and program support for the blanket design.

     

  • loading
  • [1]
    WAN Y X, LI J G, LIU Y, et al. Overview of the present progress and activities on the CFETR[J]. Nuclear Fusion, 2017, 57(10): 102009. doi: 10.1088/1741-4326/aa686a
    [2]
    ZHUANG G, LI G Q, LI J G, et al. Progress of the CFETR design[J]. Nuclear Fusion, 2019, 59(11): 112010. doi: 10.1088/1741-4326/ab0e27
    [3]
    CAO Q X, WANG X Y, WU X H, et al. Neutronics and shielding design of CFETR HCCB blanket[J]. Fusion Engineering and Design, 2021, 172: 112918. doi: 10.1016/j.fusengdes.2021.112918
    [4]
    张国书, 冯开明, 袁涛, 等. ITER试验包层模块的中子学分析与设计[J]. 核聚变与等离子体物理, 2005, 25(2): 6.
    [5]
    QU S, CAO Q X, DUAN X R, et al. Neutronics effects of homogeneous model on solid breeder blanket of CFETR[J]. Fusion Engineering and Design, 2020, 160: 111825. doi: 10.1016/j.fusengdes.2020.111825
    [6]
    NUNNENMANN E, FISCHER U, STIEGLITZ R. Sensitivity and uncertainty analysis for the tritium breeding ratio of a DEMO fusion reactor with a helium cooled pebble bed blanket[J]. EPJ Web of Conferences, 2017, 146: 09025. doi: 10.1051/epjconf/201714609025
    [7]
    FISCHER U, LEICHTLE D, PEREL R L. Monte Carlo based sensitivity and uncertainty analysis of the HCPB test blanket module in ITER[J]. Fusion Engineering and Design, 2008, 83(7-9): 1222-1226. doi: 10.1016/j.fusengdes.2008.06.053
    [8]
    ABDOU M, RIVA M, YING A, et al. Physics and technology considerations for the deuterium–tritium fuel cycle and conditions for tritium fuel self sufficiency[J]. Nuclear Fusion, 2021, 61(1): 013001. doi: 10.1088/1741-4326/abbf35
    [9]
    Aarts E. Simulated annealing and boltzmann machines[J]. Handbook of Brain Theory & Neural Networks, 1989.
    [10]
    WANG X Y, FENG K M, CHEN Y J, et al. Current design and R&D progress of the Chinese helium cooled ceramic breeder test blanket system[J]. Nuclear Fusion, 2019, 59(7): 076019. doi: 10.1088/1741-4326/ab0c32
    [11]
    QU S, CAO Q X, DUAN X R, et al. Study on multiphysics coupling and automatic neutronic optimization for solid tritium breeding blanket of fusion reactor[J]. Energies, 2021, 14(17): 5442. doi: 10.3390/en14175442
    [12]
    沈鋆,刘应华,章骁程,等. 高温设计规范RCC-MRx中的分析方法与评定准则[J]. 化工设备与管道,2018, 55(4): 1-9. doi: 10.3969/j.issn.1009-3281.2018.04.001
    [13]
    王晓宇, 段旭如, 赵奉超, 等. 中国ITER氦冷固态增殖剂实验包层系统设计研发进展[J]. 中国核电, 2020, 13(6): 6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (280) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return