Citation: | Mao Junjun, Yang Xiaoyong, Zhao Gang, Peng Wei. CFD Study on Flow and Heat Transfer Characteristics of Counter-flow Straight Channel Printed Circuit Plate Heat Exchanger[J]. Nuclear Power Engineering, 2022, 43(S2): 150-157. doi: 10.13832/j.jnpe.2022.S2.0150 |
[1] |
YIN C Y, YANG X Y, WANG J. Dimensionless analysis of heat transfer and flow resistance on laminar flow recuperator[C]//16th International Conference on Nuclear Engineering. Orlando: ASME, 2008: 659-666.
|
[2] |
LIU G X, HUANG Y P, WANG J F, et al. A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110290. doi: 10.1016/j.rser.2020.110290
|
[3] |
NATESAN K, MOISSEYTSEV A, MAJUMDAR S. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design[J]. Journal of Nuclear Materials, 2009, 392(2): 307-315. doi: 10.1016/j.jnucmat.2009.03.019
|
[4] |
FIGLEY J, SUN X D, MYLAVARAPU S K, et al. Numerical study on thermal hydraulic performance of a Printed Circuit Heat Exchanger[J]. Progress in Nuclear Energy, 2013, 68: 89-96. doi: 10.1016/j.pnucene.2013.05.003
|
[5] |
ANEESH A M, SHARMA A, SRIVASTAVA A, et al. Thermal-hydraulic characteristics and performance of 3D straight channel based printed circuit heat exchanger[J]. Applied Thermal Engineering, 2016, 98: 474-482. doi: 10.1016/j.applthermaleng.2015.12.046
|
[6] |
MYLAVARAPU S K, SUN X D, GLOSUP R E, et al. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility[J]. Applied Thermal Engineering, 2014, 65(1-2): 605-614. doi: 10.1016/j.applthermaleng.2014.01.025
|
[7] |
MYLAVARAPU S K, SUN X D, CHRISTENSEN R N. Hydrodynamically developing and fully developed laminar flows in a semicircular duct: analytical and computational analyses[J]. Nuclear Science and Engineering, 2016, 182(3): 319-331. doi: 10.13182/NSE14-107
|
[8] |
CHEN M H, SUN X D, CHRISTENSEN R N. Numerical investigation of thermal boundary conditions of a high-temperature PCHE with zigzag flow channels[C]//2018 International Congress on Advances in Nuclear Power Plants. Charlotte: ANS, 2018.
|
[9] |
CHEN M H, SUN X D, CHRISTENSEN R N, et al. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger[J]. Applied Thermal Engineering, 2016, 108: 1409-1417. doi: 10.1016/j.applthermaleng.2016.07.149
|
[10] |
SEO J W, KIM Y H, KIM D, et al. Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers[J]. Entropy, 2015, 17(5): 3438-3457. doi: 10.3390/e17053438
|
[11] |
LI H Z, KRUIZENGA A, ANDERSON M, et al. Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures[J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. doi: 10.1016/j.ijthermalsci.2011.07.004
|
[12] |
LI H Z, ZHANG Y F, ZHANG L X, et al. PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle[J]. International Journal of Heat and Mass Transfer, 2016, 98: 204-218. doi: 10.1016/j.ijheatmasstransfer.2016.03.001
|
[13] |
KRUIZENGA A, ANDERSON M, FATIMA R, et al. Heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(3): 031002. doi: 10.1115/1.4004252
|