Citation: | Wen Xingjian, Tian Chao, Tang Songqian, Zhai Zian, Miao Jianxin, Cao Liangzhi, Liu Zhouyu. Research on Predictor-Corrector Method Based on Prediction of Reaction Rates[J]. Nuclear Power Engineering, 2022, 43(S2): 213-219. doi: 10.13832/j.jnpe.2022.S2.0213 |
[1] |
SCHLAPPER G A. Methods of steady-state reactor physics in nuclear design[J]. Nuclear Technology, 1984, 65(2): 358-358. doi: 10.13182/NT84-A33423
|
[2] |
GERRITY III T P. MCODE-3: Time-dependent depletion isotopics with MCNP-5 and SCALE-6.1[D]. Cambridge, Massachusetts: Massachusetts Institute of Technology, 2012.
|
[3] |
ISOTALO A E, AARNIO P A. Higher order methods for burnup calculations with Bateman solutions[J]. Annals of Nuclear Energy, 2011, 38(9): 1987-1995. doi: 10.1016/j.anucene.2011.04.022
|
[4] |
王芷妍. 基于改进半预估修正的蒙特卡罗输运—燃耗耦合策略研究[D]. 合肥: 中国科学技术大学, 2018.
|
[5] |
GODFREY A. VERA core physics benchmark progression problem specifications, revision 4, CASL technical report: CASL-U-2012-0131-004[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 2014.
|
[6] |
KIM K S. Specification for the VERA depletion benchmark suite: CASL-X-2015-1014-000[R]. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 2015.
|
[7] |
CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
|
[8] |
YAMAMOTO A, IKEHARA T, ITO T, et al. Benchmark problem suite for reactor physics study of LWR next generation fuels[J]. Journal of Nuclear Science and Technology, 2002, 39(8): 900-912. doi: 10.1080/18811248.2002.9715275
|