Advance Search
Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Wang Xining, Liu Zhouyu, Zhou Xinyu, Wen Xingjian, Cao Lu, Zhang Sifan, Xu Xiaobei, Yi Siyu, Li Shuaizheng, Li Fan, Su Xin. Development and Validated Application of Calculation Function of High Fidelity Refueling Cycle for Pressurized Water Reactor[J]. Nuclear Power Engineering, 2023, 44(2): 30-36. doi: 10.13832/j.jnpe.2023.02.0030
Citation: Wang Xining, Liu Zhouyu, Zhou Xinyu, Wen Xingjian, Cao Lu, Zhang Sifan, Xu Xiaobei, Yi Siyu, Li Shuaizheng, Li Fan, Su Xin. Development and Validated Application of Calculation Function of High Fidelity Refueling Cycle for Pressurized Water Reactor[J]. Nuclear Power Engineering, 2023, 44(2): 30-36. doi: 10.13832/j.jnpe.2023.02.0030

Development and Validated Application of Calculation Function of High Fidelity Refueling Cycle for Pressurized Water Reactor

doi: 10.13832/j.jnpe.2023.02.0030
  • Received Date: 2022-03-25
  • Rev Recd Date: 2022-12-26
  • Publish Date: 2023-04-15
  • The refueling cycle calculation function for pressurized water reactor (PWR) is developed on the basis of the self-developed numerical nuclear reactor physics calculation code NECP-X. Startup physics experiments are conducted for the first, second and third cycles of an M310 reactor, and fine modeling calculation is carried out for the first two cycles. By comparing the calculated values with the measured values, it shows that the errors of calculation results of critical boron concentration, control rod worth and temperature coefficient in the startup physics experiments for the first, second and third cycles are relatively small, which meet the acceptance criteria. The results of comparison of the critical boron concentration and core power distribution with the measured values at different burnup levels show that the maximum boron concentration deviation at the stable burnup point is −39ppm (1ppm = 10−6), and the maximum assembly power error is less than 4.5%. With the increase of burnup level, the core power distribution flattens out and the error decreases gradually. The calculation results show that NECP-X already has the calculation function for the startup physics experiments and multi-fuel cycle of commercial PWRs.

     

  • loading
  • [1]
    张建生,蔡勇,陈念年. MCNP程序研究进展[J]. 原子核物理评论,2008, 25(1): 48-51.
    [2]
    李刚,张宝印,邓力,等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束,2013, 25(1): 158-162.
    [3]
    李泽光,王侃,佘顶,等. 自主堆用蒙卡模拟程序RMC2.0开发(英文)[J]. 核动力工程,2010, 31(S2): 43-47.
    [4]
    孙光耀,宋婧,郑华庆,等. 超级蒙特卡罗计算软件SuperMC2.0中子输运计算校验[J]. 原子能科学技术,2013, 47(S2): 520-525.
    [5]
    CHO J Y, HAN T Y, PARK H J, et al. Improvement and verification of the DeCART code for HTGR core physics analysis[J]. Nuclear Engineering and Technology, 2019, 51(1): 13-30. doi: 10.1016/j.net.2018.09.004
    [6]
    WANG X Y, LIU Y X, MARTIN W, et al. Implementation of 2d/1d gamma transport and gamma heating capability in MPACT[J]. EPJ Web of Conferences, 2021, 247: 02038. doi: 10.1051/epjconf/202124702038
    [7]
    CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [8]
    刘仕倡. 基于RMC的反应堆全寿期高保真模拟与随机介质精细计算[D]. 北京: 清华大学, 2018.
    [9]
    刘宙宇,曹良志. 高保真物理-热工耦合计算方法研究及应用[J]. 原子核物理评论,2020, 37(3): 797-803.
    [10]
    曹璐,刘宙宇,张旻婉,等. NECP-X程序中基于全局-局部耦合策略的非棒状几何燃料共振计算方法研究[J]. 核动力工程,2021, 42(1): 204-210.
    [11]
    LIU Z Y, HE Q M, WEN X J, et al. Improvement and optimization of the pseudo-resonant-nuclide subgroup method in NECP-X[J]. Progress in Nuclear Energy, 2018, 103: 60-73. doi: 10.1016/j.pnucene.2017.11.006
    [12]
    LIU Z Y, ZHAO C, CAO L, et al. The material-region-based 2D/1D transport method[J]. Annals of Nuclear Energy, 2019, 128: 1-11. doi: 10.1016/j.anucene.2018.12.025
    [13]
    LIU Z Y, ZHOU X Y, CAO L Z, et al. A new three-level CMFD method based on the loosely coupled parallel strategy[J]. Annals of Nuclear Energy, 2020, 145: 107529. doi: 10.1016/j.anucene.2020.107529
    [14]
    王博,刘宙宇,陈军,等. 基于NECP-X程序的C5G7-TD系列基准题的计算与分析[J]. 核动力工程,2020, 41(3): 24-30.
    [15]
    WEN X J, LIU Z Y, CHEN J, et al. Development and validation of the depletion capability of the high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2020, 138: 107096. doi: 10.1016/j.anucene.2019.107096
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views (1272) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return