Citation: | Deng Shiyu, Lu Tao, Deng Jian, Zhang Xilin, Zhu Dahuan. Optimization of Turbulent Prandtl Numbers and RANS Models for Liquid Lead-bismuth Eutectic[J]. Nuclear Power Engineering, 2023, 44(2): 98-103. doi: 10.13832/j.jnpe.2023.02.0098 |
[1] |
DUPONCHEEL M, BRICTEUX L, MANCONI M, et al. Assessment of RANS and improved near-wall modeling for forced convection at low Prandtl numbers based on LES up to Reτ = 2000[J]. International Journal of Heat and Mass Transfer, 2014, 75: 470-482. doi: 10.1016/j.ijheatmasstransfer.2014.03.080
|
[2] |
NATESAN K, SUNDARARAJAN T, NARASIMHAN A, et al. Turbulent flow simulation in a wire-wrap rod bundle of an LMFBR[J]. Nuclear Engineering and Design, 2010, 240(5): 1063-1072. doi: 10.1016/j.nucengdes.2009.12.025
|
[3] |
SAGAUT P. Large eddy simulation for incompressible flows. An introduction[J]. Measurement Science and Technology, 2001, 12(10): 1745-1746.
|
[4] |
AOKI S. A consideration on the heat transfer in liquid metal[J]. Bulletin of the Tokyo Institute of Technology, 1963, 54: 63-73.
|
[5] |
REYNOLDS A J. The prediction of turbulent Prandtl and Schmidt numbers[J]. International Journal of Heat and Mass Transfer, 1975, 18(9): 1055-1069. doi: 10.1016/0017-9310(75)90223-9
|
[6] |
JISCHA M, RIEKE H B. About the prediction of turbulent Prandtl and Schmidt numbers from modeled transport equations[J]. International Journal of Heat and Mass Transfer, 1979, 22(11): 1547-1555. doi: 10.1016/0017-9310(79)90134-0
|
[7] |
CHENG X, TAK N I. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
|
[8] |
PACIO J, DAUBNER M, FELLMOSER F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016, 301: 111-127. doi: 10.1016/j.nucengdes.2016.03.003
|
[9] |
PACIO J, DAUBNER M, FELLMOSER F, et al. Corrigendum to "Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers"[Nucl. Eng. Des. 301 (2016) 111-127][J]. Nuclear Engineering and Design, 2021, 371: 110928. doi: 10.1016/j.nucengdes.2020.110928
|
[10] |
FAZIO C, SOBOLEV V P, AERTS A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. France: Organisation for Economic Co-operation and Development, 2015: 91.
|
[11] |
GAJAPATHY R, VELUSAMY K, SELVARAJ P, et al. CFD investigation of helical wire-wrapped 7-pin fuel bundle and the challenges in modeling full scale 217 pin bundle[J]. Nuclear Engineering and Design, 2007, 237(24): 2332-2342. doi: 10.1016/j.nucengdes.2007.05.003
|
[12] |
JEONG J H, SONG M S, LEE K L. CFD investigation of three-dimensional flow phenomena in a JAEA 127-pin wire-wrapped fuel assembly[J]. Nuclear Engineering and Design, 2017, 323: 166-184. doi: 10.1016/j.nucengdes.2017.08.008
|
[13] |
FEI C, HUAI X L, CAI J, et al. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic[J]. Nuclear Engineering and Design, 2013, 257: 128-133. doi: 10.1016/j.nucengdes.2013.01.005
|
[14] |
MERZARI E, FISCHER P, YUAN H, et al. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly[J]. Nuclear Engineering and Design, 2016, 298: 218-228. doi: 10.1016/j.nucengdes.2015.11.002
|