Advance Search
Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Meng Yang, Fan Ruichen, Sui Xi, Li Yong, Zheng Jiantao, Zhang Jiaqi, Wang Jie, Yu Ting. Study on Effect of Temperature on the Narrow Gap Ressistance Coefficient Test[J]. Nuclear Power Engineering, 2023, 44(3): 74-78. doi: 10.13832/j.jnpe.2023.03.0074
Citation: Meng Yang, Fan Ruichen, Sui Xi, Li Yong, Zheng Jiantao, Zhang Jiaqi, Wang Jie, Yu Ting. Study on Effect of Temperature on the Narrow Gap Ressistance Coefficient Test[J]. Nuclear Power Engineering, 2023, 44(3): 74-78. doi: 10.13832/j.jnpe.2023.03.0074

Study on Effect of Temperature on the Narrow Gap Ressistance Coefficient Test

doi: 10.13832/j.jnpe.2023.03.0074
  • Received Date: 2022-07-12
  • Rev Recd Date: 2022-08-22
  • Publish Date: 2023-06-15
  • The coolant leakage and bypass flow channel in PWR is mostly a narrow gap. The size of narrow gap is sensitive to be easily affected by system pressure, differential pressure, temperature, vibration and other factors. Small size changes will cause significant changes in resistance coefficient, resulting in the measured Reynolds number and resistance coefficient curve contrary to the basic principles of fluid dynamics. In this paper, the study on effect of temperature change on the flow resistance coefficient in narrow gap is conducted under the conditions of constant temperature and temperature rise. During the temperature rise test, the system pressure, the differential pressure and flow of the test body stays unchanged, and gradually increase the temperature of the fluid, then obtain the resistance coefficient of the test body under different temperature. The test results show that when the temperature of the test fluid rises from 23°C to 52°C, the narrow gap of the test body is more closely fitted due to thermal expansion and cold contraction, and the flow resistance coefficient increases by 8%.

     

  • loading
  • [1]
    SATO H, JOHNSON R, SCHULTZ R. Computational fluid dynamic analysis of core bypass flow phenomena in a prismatic VHTR[J]. Annals of Nuclear Energy, 2010, 37(9): 1172-1185. doi: 10.1016/j.anucene.2010.04.021
    [2]
    TRAVIS B W, EL-GENK M S. Thermal–hydraulics analyses for 1/6 prismatic VHTR core and fuel element with and without bypass flow[J]. Energy Conversion and Management, 2013, 67: 325-341. doi: 10.1016/j.enconman.2012.11.003
    [3]
    TUNG Y H, JOHNSON R W, SATO H. Effects of graphite surface roughness on bypass flow computations for an HTGR[J]. Nuclear Engineering and Design, 2012, 252: 78-87. doi: 10.1016/j.nucengdes.2012.07.010
    [4]
    WANG H H, HASSAN Y A, DOMINGUEZ-ONTIVEROS E. Experimental study of core bypass flow in a prismatic VHTR based on a two-layer block model[J]. Nuclear Engineering and Design, 2016, 306: 98-107. doi: 10.1016/j.nucengdes.2015.09.025
    [5]
    TAK N I, KIM M H, LIM H S, et al. Validation of numerical methods to calculate bypass flow in a prismatic gas-cooled reactor core[J]. Nuclear Engineering and Technology, 2013, 45(6): 745-752. doi: 10.5516/NET.02.2013.521
    [6]
    KIM M H, LIM H S. Evaluation of the influence of bypass flow gap distribution on the core hot spot in a prismatic VHTR core[J]. Nuclear Engineering and Design, 2011, 241(8): 3076-3085. doi: 10.1016/j.nucengdes.2011.05.009
    [7]
    VAN RENSBURG J J J, KLEINGELD M. A CFD method to evaluate the integrated influence of leakage and bypass flows on the PBMR Reactor Unit[J]. Nuclear Engineering and Design, 2010, 240(11): 3841-3850. doi: 10.1016/j.nucengdes.2010.08.011
    [8]
    VAN RENSBURG J J J, KLEINGELD M. Investigating leakage and bypass flows in an HTR using a CFD methodology[J]. Nuclear Engineering and Design, 2011, 241(12): 4960-4971. doi: 10.1016/j.nucengdes.2011.08.073
    [9]
    YOON S J, LEE J H, KIM M H, et al. The effects of crossflow gap and axial bypass gap distribution on the flow characteristics in prismatic VHTR core[J]. Nuclear Engineering and Design, 2012, 250: 465-479. doi: 10.1016/j.nucengdes.2012.04.025
    [10]
    杨来生,宗桂芳. 秦山600MW反应堆旁漏流水力模拟实验研究[J]. 核动力工程,1999, 20(4): 317-322.
    [11]
    王盛, 杨来生, 方颖, 等. CNP1000反应堆旁漏流、流量分配及交混特性研究[C]//罗琦. 中国核动力研究设计院科学技术年报(2009). 成都: 中国核动力研究设计院, 2011: 18-20.
    [12]
    孟洋,李华奇,王盛. CNP1000反应堆控制棒导向管旁流试验研究[J]. 原子能科学技术,2007, 41(S1): 31-34.
    [13]
    徐元利,李华奇,王盛. CNP1000反应堆出口管缝隙漏流试验研究[J]. 原子能科学技术,2007, 41(S1): 59-61.
    [14]
    方颖,张伟,眭曦,等. CAP1400反应堆吊篮与围筒旁通流特性实验研究[J]. 原子能科学技术,2016, 50(2): 273-276. doi: 10.7538/yzk.2016.50.02.0273
    [15]
    眭曦,廖恒基,丁雷,等. 控制棒导向管外流道旁流特性实验研究[J]. 原子能科学技术,2018, 52(11): 1956-1961. doi: 10.7538/yzk.2018.youxian.0208
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (116) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return