Advance Search
Volume 44 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Tang Qifen, Wang Yuan, Pan Junjie, Qiang Shenglong, Fan Jiakun, Cui Xiantao. The Implementation and Efficiency Analysis of Parallel Mesh Mapping based on the Multi-physics Coupling Framework[J]. Nuclear Power Engineering, 2023, 44(3): 231-236. doi: 10.13832/j.jnpe.2023.03.0231
Citation: Tang Qifen, Wang Yuan, Pan Junjie, Qiang Shenglong, Fan Jiakun, Cui Xiantao. The Implementation and Efficiency Analysis of Parallel Mesh Mapping based on the Multi-physics Coupling Framework[J]. Nuclear Power Engineering, 2023, 44(3): 231-236. doi: 10.13832/j.jnpe.2023.03.0231

The Implementation and Efficiency Analysis of Parallel Mesh Mapping based on the Multi-physics Coupling Framework

doi: 10.13832/j.jnpe.2023.03.0231
  • Received Date: 2022-11-14
  • Rev Recd Date: 2023-03-05
  • Publish Date: 2023-06-15
  • Refined physical-thermal coupling calculations of reactors can simulate the core behavior more accurately. However, existing analysis programs adopt different discrete formats and mesh divisions when calculating different physical fields, resulting in a complex mesh mapping relationship for the transfer of discrete variables between physical fields. Especially for the refined whole-core modeling, the large-scale mesh mapping will affect the accuracy and efficiency of the coupled system solution. In this paper, based on the self-developed multi-physics coupling framework MORE, the thermal-hydraulic sub-channel software CORTH integrated in MORE, and the Monka program RMC, the whole core refined mesh of the physical-thermal coupling calculation was realized by the method of area decomposition parallel mesh mapping. The mapping time between the million-level structured mesh and unstructured mesh can be reduced to 8 s on 20 cpus, and maximum parallel mapping efficiency reaches 77.96% on 10 cpus, which improves the coupling calculation efficiency.

     

  • loading
  • [1]
    TURINSKY P J, KOTHE D B. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)[J]. Journal of Computational Physics, 2016, 313: 367-376. doi: 10.1016/j.jcp.2016.02.043
    [2]
    STANEK C R. Overview of DOE-NE NEAMS program: A-UR-19-22247[R]. Los Alamos: Los Alamos National Lab, 2019.
    [3]
    CHAULIAC C, ARAGONÉS J M, BESTION D, et al. NURESIM – A European simulation platform for nuclear reactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J]. Nuclear Engineering and Design, 2011, 241(9): 3416-3426. doi: 10.1016/j.nucengdes.2010.09.040
    [4]
    JIMENEZ G, HERRERO J J, GOMMLICH A, et al. Boron dilution transient simulation analyses in a PWR with neutronics/thermal-hydraulics coupled codes in the NURISP project[J]. Annals of Nuclear Energy, 2015, 84: 86-97. doi: 10.1016/j.anucene.2014.11.002
    [5]
    CHANARON B. Overview of the NURESAFE European Project[J]. Nuclear Engineering and Design, 2017, 321: 1-7. doi: 10.1016/j.nucengdes.2017.09.001
    [6]
    佘顶,王侃,余纲林. 堆用蒙卡程序燃耗计算功能开发[J]. 核动力工程,2012, 33(3): 1-5,11.
    [7]
    梁金刚,王侃,余纲林,等. 基于RMC的计数器数据分解方法研究[J]. 核动力工程,2014, 35(4): 142-146. doi: 10.13832/j.jnpe.2014.04.0142
    [8]
    潘俊杰,曾未,强胜龙,等. 基于耦合框架的多通道程序网格与接口模块开发[J]. 原子能科学技术,2022, 56(S1): 32-41.
    [9]
    崔显涛,强胜龙,匡邓晖,等. 基于最近邻域算法的蒙卡负载均衡实现[J]. 核动力工程,2021, 42(S2): 37-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (317) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return