Citation: | Xing Shuo, Pu Zengping, Zhang Kun, Jiao Yongjun, Dai Xun, He Liang. Study on Evaluation Method for Creep Performance of New Zirconium Alloy Cladding[J]. Nuclear Power Engineering, 2023, 44(4): 234-239. doi: 10.13832/j.jnpe.2023.04.0234 |
[1] |
彭继华,李文芳,BECHADE J L,等. 织构对先进锆合金蠕变性能各向异性的影响[J]. 稀有金属,2008, 32(1): 1-6.
|
[2] |
王朋飞,赵文金,陈乐,等. N36锆合金包壳管的高温蠕变行为[J]. 稀有金属材料与工程,2015, 44(5): 1149-1153.
|
[3] |
GEELHOOD K J, LUSCHER W G. FRAPCON-3.5: a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup: NUREG/CR-7022[R]. Richland: U. S. Nuclear Regulatory Commission, 2014: 2.30-2.31.
|
[4] |
SONIAK A, L’HULLIER N, MARDON J P, et al. Irradiation Creep behavior of Zr-base alloys[C]//Zirconium in the Nuclear Industry: 13th International Symposium. Annecy: ASTM, 2002: 837-862.
|
[5] |
ITO K, KAMIMURA K, TSUKUDA Y, et al. Evaluation of irradiation effect on spent fuel cladding creep properties[C]//Proceedings of the 2004 International Meeting on LWR Fuel Performance. Orlando, FL: American Nuclear Society, 2004: 1117.
|
[6] |
GAROFALO F. Fundamentals of creep and creep-rupture in metals[M]. New York: The Macmillan Co., 1965: 17.
|