Citation: | Wang Lipeng, Zhang Xinyi, Jiang Duoyu, Hu Tianliang, Cao Liangzhi, Wu Hongchun, Cao Lu. Evaluation of Thermal Neutron Scattering Data for H in ZrHx Based on Deterministic Method[J]. Nuclear Power Engineering, 2023, 44(5): 23-29. doi: 10.13832/j.jnpe.2023.05.0023 |
[1] |
SLAGGIE E L. Central force lattice dynamical model for zirconium hydride[J]. Journal of Physics and Chemistry of Solids, 1968, 29(6): 923-934. doi: 10.1016/0022-3697(68)90227-8
|
[2] |
MALIK S S, RORER D C, BRUNHART G. Optical-phonon structure and precision neutron total cross section measurements of zirconium hydride[J]. Journal of Physics F:Metal Physics, 1984, 14(1): 73-81. doi: 10.1088/0305-4608/14/1/010
|
[3] |
MATTES M, KEINERT J. Thermal neutron scattering data for the moderator materials H2O, D2O and ZrHx in ENDF-6 format and as ACE library for MCNP(X) codes: INDC (NDS)-0470[R]. Vienna: International Atomic Energy Agency, 2005.
|
[4] |
ZHENG W X, MCCLARREN R G. Physics-based uncertainty quantification for the ZrHx thermal scattering law[C]//ANS Winter Meeting 2013. Washington: ANS, 2013.
|
[5] |
ZHENG W X, MCCLARREN R G. Emulation-based calibration for parameters in parameterized phonon spectrum of ZrHx in TRIGA reactor simulations[J]. Nuclear Science and Engineering, 2016, 183(1): 78-95. doi: 10.13182/NSE15-48
|
[6] |
WANG L P, WAN C H, CAO L Z, et al. Phonon parameters fitting for the simulated thermal-neutron scattering cross section of H in ZrHx using unified Monte Carlo method[J]. Annals of Nuclear Energy, 2021, 151: 107920. doi: 10.1016/j.anucene.2020.107920
|
[7] |
KONING A J, ROCHMAN D. Towards sustainable nuclear energy: putting nuclear physics to work[J] Annals of Nuclear Energy, 2008, 35(11): 2024-2030.
|
[8] |
SCOTTA J P, NOGUERE G, BERNARD D, et al. Study of neutron scattering in light water in the mistral experiments carried out in EOLE reactor at CEA cadarache[C]//PHYSOR 2016 - International Conference on the Advances in Reactor Physics. Sun Valley, USA, 2016.
|
[9] |
MACFARLANE R, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, version 2016: LA-UR-17-20093[R]. Los Alamos: Los Alamos National Laboratory, 2017.
|
[10] |
SMITH D L. Probability, statistics, and data uncertainties in nuclear science and technology[M]. LaGrange Park: American Nuclear Society, 1991.
|
[11] |
WHITTEMORE W L. Differential neutron thermalization: GA-5554[R]. Washington: U. S. Atomic Energy Commission, 1964.
|
[12] |
PUROHIT S N, PAN S S, BISCHOFF F, et al. Inelastic neutron scattering in metal hydrides, UC and UO2, and applications of the scattering law[C]//IAEA Symposium on Neutron Thermalization and Reactor Spectra. Ann Arbor: IAEA, 1968: 407-435.
|
[13] |
ĆALIĆ D, ŽEROVNIK G, TRKOV A, et al. Validation of the serpent 2 code on TRIGA mark II benchmark experiments[J]. Applied Radiation and Isotopes, 2016, 107: 165-170. doi: 10.1016/j.apradiso.2015.10.022
|
[14] |
LEPPÄNEN J, PUSA M, VIITANEN T, et al. The serpent Monte Carlo code: status, development and applications in 2013[J]. Annals of Nuclear Energy, 2015, 82: 142-150.
|