Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Wang Donghui, Li Qing, Zhang Yanming, Zeng Qingna, Dong Leilei. Study on Shock Response of ACP100S Floating Nuclear Power Plant Subjected to Ship Collision[J]. Nuclear Power Engineering, 2023, 44(5): 95-103. doi: 10.13832/j.jnpe.2023.05.0095
Citation: Wang Donghui, Li Qing, Zhang Yanming, Zeng Qingna, Dong Leilei. Study on Shock Response of ACP100S Floating Nuclear Power Plant Subjected to Ship Collision[J]. Nuclear Power Engineering, 2023, 44(5): 95-103. doi: 10.13832/j.jnpe.2023.05.0095

Study on Shock Response of ACP100S Floating Nuclear Power Plant Subjected to Ship Collision

doi: 10.13832/j.jnpe.2023.05.0095
  • Received Date: 2022-11-08
  • Rev Recd Date: 2023-05-12
  • Publish Date: 2023-10-13
  • Ship collision is a significant external event for the design of nuclear floating facilities, and it has a great impact on safety. In this paper, based on the crashworthy design review of nuclear merchant ships, the numerical simulation techniques suitable for the ship-collision analysis are established and validated by the available experimental result in the literature. Using the validated numerical method, the collision between a supply ship and the ACP100S floating nuclear power plant (FNPP) is simulated for bow- and broadside-collision scenarios, and the shock response of the key shipboard equipment is obtained. The calculation and analysis results show that the shock acceleration of the key equipment in the broadside-collision case exceeds 1g, which is the design basis load for nuclear merchant ships. The research results of this study have certain guiding significance for the shock resistance design of floating nuclear power plant hull and reactor key equipment.

     

  • loading
  • [1]
    张煜. 国内外浮动式核电站发展现状的研究[J]. 中国新技术新产品,2020(1): 131-132. doi: 10.3969/j.issn.1673-9957.2020.01.071
    [2]
    国家核安全局. 浮动核动力装置设计中所选择的外部事件(试行): NNSA-HAJ-0002-2018[S]. 北京: 国家核安全局, 2018: 9-10.
    [3]
    KRAMER A W. Nuclear propulsion for merchant ships[M]. Washington: ‎U. S. Atomic Energy Commission, 1962: 244-256.
    [4]
    吴伟国,王天琦,郭君,等. 20000 t浮动核电站驳船与补给船碰撞计算分析[J]. 船舶,2016, 27(5): 33-43.
    [5]
    程方训,孙海军,刘磊. 海上浮动核电站压力容器DDAM抗冲击计算[J]. 舰船科学技术,2019, 41(5): 108-111.
    [6]
    谭美,郭健,郭翔,等. 海上浮动核电站堆舱碰撞安全研究[J]. 舰船科学技术,2019, 41(15): 85-89.
    [7]
    Sayres and Associates Corporation. N.S. Savannah: updated final safety analysis report: STS-004-002[R]. Washington DC: U.S. Department of Transportation, Maritime Administration, Office of Ship Disposal, 2011.
    [8]
    DODD J A, MACDONALD S. Collision considerations in the design and construction of the “Savannah”[J]. The Motor Ship, 1960, 41(484): 333-335.
    [9]
    ANDO Y. Safety evaluation of the first nuclear ship in Japan[J]. Nuclear Engineering and Design, 1969, 10(2): 243-249. doi: 10.1016/0029-5493(69)90043-0
    [10]
    READE IV J M. Design criteria for nuclear powered merchant ships[D]. Cambridge: Massachusetts Institute of Technology, 1969.
    [11]
    PAIK J K. Practical techniques for finite element modelling to simulate structural crashworthiness in ship collisions and grounding (part II: verification)[J]. Ships and Offshore Structures, 2007, 2(1): 81-85. doi: 10.1533/saos.2006.0149
    [12]
    PAIK J K. Practical techniques for finite element modeling to simulate structural crashworthiness in ship collisions and grounding (part I: theory)[J]. Ships and Offshore Structures, 2007, 2(1): 69-80. doi: 10.1533/saos.2006.0148
    [13]
    高震. 船舶碰撞数值仿真技术与FPSO船侧耐撞结构研究[D]. 上海: 上海交通大学, 2003.
    [14]
    LS‐DYNA® Aerospace Working Group. Modeling guidelines document[EB/OL]. (2022-06-20)[2022-09-08]. https://awg.ansys.com/tiki-download_file.php?fileId=2173.
    [15]
    江华涛. 船舶碰撞与缓冲船艏结构研究[D]. 上海: 上海交通大学, 2002.
    [16]
    OHTSUBO H, KAWAMOTO K, KUROIWA T. Experimental and numerical research on ship collision and grounding of oil tankers[J]. Nuclear Engineering and Design, 1994, 150(2-3): 385-396. doi: 10.1016/0029-5493(94)90158-9
    [17]
    Lloyd’s Register. Guidance notes for risk based analysis: collisions[Z]. London: Lloyd’s Register Group Limited, 2014.
    [18]
    Norsok Standard. Design of steel structures: Norsok N-004[S]. Norway: Standard Norway, 2013: 69, 80, 226.
    [19]
    Det Norske Veritas. Preliminary recommendations for the design, construction and classification of nuclear powered ships[S]. Oslo: Det Norske Veritas, 1960.
    [20]
    American Bureau of Shipping. Guide for the classification of nuclear ships[S]. New York: American Bureau of Shipping, 1962.
    [21]
    Germanischer Lloyd. Vorläufige richtlinien für klassifikation und bau von seeschiffen mit kernenergieanlagen[S]. New York: American Bureau of Shipping, 1963.
    [22]
    Nippon Kaiji Kyokai. Provisional guide for the classification of nuclear ships[S]. Tokyo: Nippon Kaiji Kyokai, 1964.
    [23]
    Lloyd's Register. Provisional rules for the classification of nuclear ships[S]. London: Lloyd's Register of Shipping, 1965.
    [24]
    ZINN W H, DIETRICH J R. Design practice: The N. S. savannah[J]. Power Reactor Technology, 1962, 6(1): 43-54.
    [25]
    YOSHIO NAGATO. Construction of the nuclear ship “Mutsu”[J]. Journal of the Marine Engineering Society in Japan, 1972, 7(12): 897-904. doi: 10.5988/jime1966.7.12_897
    [26]
    SHIGERU NARA. Crashworthy structure of the nuclear ship “Mutsu”[J]. Bulletin of the Society of Naval Architects of Japan, 1971, 500: 57-61.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (132) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return