Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Zhou Linjie, Zhang Donghui, Yang Jun, Wang Xiaokun, Wang Jin, Guo Zhongxiao. Development of Transient Computational Model for Stirling Engine Used in Liquid Metal Reactor[J]. Nuclear Power Engineering, 2023, 44(5): 136-143. doi: 10.13832/j.jnpe.2023.05.0136
Citation: Zhou Linjie, Zhang Donghui, Yang Jun, Wang Xiaokun, Wang Jin, Guo Zhongxiao. Development of Transient Computational Model for Stirling Engine Used in Liquid Metal Reactor[J]. Nuclear Power Engineering, 2023, 44(5): 136-143. doi: 10.13832/j.jnpe.2023.05.0136

Development of Transient Computational Model for Stirling Engine Used in Liquid Metal Reactor

doi: 10.13832/j.jnpe.2023.05.0136
  • Received Date: 2022-10-19
  • Rev Recd Date: 2023-02-27
  • Publish Date: 2023-10-13
  • In order to explore the matching characteristics of the Stirling engine and the liquid metal nuclear reactor, a transient code for Stirling engine operation simulation is developed based on the Stirling cycle third-order analysis method. In this model, the working cavity and the heat exchanger of Stirling engine are modeled by the one-dimensional hydrodynamics method, and the simulation of operating Stirling engine in the liquid metal nuclear reactor is realized. In this paper, the steady state operation of the fixed wall temperature boundary condition is simulated by using the test data of GPU-3 Stirling engine, and the results show good agreement with the test data. After connecting to the heat exchanger solver module, the code has successfully realized the transient simulation of the Stirling engine under constant and transient boundary conditions. This indicates that the model can be used for the working condition analysis of the coupling system between the liquid metal nuclear reactor and the Stirling engine.

     

  • loading
  • [1]
    金东寒. 斯特林发动机技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009: 1-12.
    [2]
    MARTINI W R. Stirling engine design manual: NASA CR-135382[R]. Seattle: Washington University, 1978.
    [3]
    BEALE W T. Free piston Stirling engines-some model tests and simulations: 690230[R]. Pittsburgh: SAE, 1969.
    [4]
    SCHMIDT G. The theory of Lehmann's calorimetric machine[J]. Zeitschrift Des Vereines Deutscher Ingenieure, 1871, 15(1): 98-112.
    [5]
    FINKELSTEIN T. Thermodynamic analysis of Stirling engines[J]. Journal of spacecraft and rockets, 1967, 4(9): 1184-1189. doi: 10.2514/3.29049
    [6]
    URIELI I, BERCHOWITZ D M. Stirling cycle engine analysis[M]. Bristol: A. Hilger, 1984: 20-123.
    [7]
    FINKELSTEIN T. Computer analysis of Stirling engines[J]. Advances in Cryogenic Engineering, 1975, 20: 269-282.
    [8]
    URIELI I, RALLIS C J, BERCHOWITZ D M. Computer simulation of Stirling cycle machines[C]. Washington, DC.: 12th Intersociety Energy Conversion Engineering Conference, USA. 1977, 2: 1512-1521
    [9]
    ZHU S W, MATSUBARA Y. A numerical method of regenerator[J]. Cryogenics, 2004, 44(2): 131-140. doi: 10.1016/j.cryogenics.2003.10.002
    [10]
    BOROUJERDI A A, ASHRAFIZADEH A, NAEENIAN S M M. Numerical analysis of stirling type pulse tube cryocoolers[J]. Cryogenics, 2011, 51(9): 521-529. doi: 10.1016/j.cryogenics.2011.06.008
    [11]
    WANG K, DUBEY S, CHOO F H, et al. A transient one-dimensional numerical model for kinetic Stirling engine[J]. Applied Energy, 2016, 183: 775-790. doi: 10.1016/j.apenergy.2016.09.024
    [12]
    QIU H, WANG K, YU P F, et al. A third-order numerical model and transient characterization of a β-type Stirling engine[J]. Energy, 2021, 222: 119973. doi: 10.1016/j.energy.2021.119973
    [13]
    GEDEON D. Sage user’s guide[M]. 12th ed. Athens: Gedeon Associates, 2021: 105-343.
    [14]
    AHMED F, HUANG H L, AHMED S, et al. A comprehensive review on modeling and performance optimization of Stirling engine[J]. International Journal of Energy Research, 2020, 44(8): 6098-6127. doi: 10.1002/er.5214
    [15]
    THIEME L G. Low-power baseline test results for the GPU 3 Stirling engine: NASA-TM-79103[R]. Cleveland: Lewis Research Center. 1979.
    [16]
    TIMOUMI Y, TLILI I, BEN NASRALLAH S. Performance optimization of stirling engines[J]. Renewable Energy, 2008, 33(9): 2134-2144. doi: 10.1016/j.renene.2007.12.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (1085) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return