Advance Search
Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Yu Zhaohui, Zhou Lusheng, Chen Shu, Yang Tao, Du Yida. Precision Validation on the Flaws in Pipe Blocks of Performance Demonstration Inspection for Nuclear Power Plant[J]. Nuclear Power Engineering, 2023, 44(5): 195-200. doi: 10.13832/j.jnpe.2023.05.0195
Citation: Yu Zhaohui, Zhou Lusheng, Chen Shu, Yang Tao, Du Yida. Precision Validation on the Flaws in Pipe Blocks of Performance Demonstration Inspection for Nuclear Power Plant[J]. Nuclear Power Engineering, 2023, 44(5): 195-200. doi: 10.13832/j.jnpe.2023.05.0195

Precision Validation on the Flaws in Pipe Blocks of Performance Demonstration Inspection for Nuclear Power Plant

doi: 10.13832/j.jnpe.2023.05.0195
  • Received Date: 2023-01-03
  • Rev Recd Date: 2023-06-21
  • Publish Date: 2023-10-13
  • The radiographic testing (RT), ultrasonic testing (UT) and anatomical measurement were employed to measure the embodied real flaws in self-developed pipe blocks of performance demonstration inspection (PDI), and the differences between the geometric dimensions and position coordinate parameters of the embodied flaws and the design values were analyzed. The test involved four different specifications of pipe blocks, with a total of 16 defects, all of which are cracks. The results show that the track of embodying weld is eliminated completely, the cracks are featured with natural and high closure, and the tips are distinguishable with no secondary propagation. The embodied crack forms a complete metallurgical bond with the parent body of the block, and there is no abnormal signal reflection interface or secondary flaw in the embodied weld. After RT and UT, it is confirmed that the average absolute value deviation of the geometric size and position coordinates of the defects is less than 2.0 mm, and after anatomical measurement, the average absolute value deviation is less than 1.0 mm. The flaw precision meets the requirement for PDI of nuclear power plant.

     

  • loading
  • [1]
    王臣,孙海涛,高晨,等. M310型核电厂在役检查的改进和优化[J]. 核动力工程,2015, 36(2): 89-92.
    [2]
    杨浩. 核电厂核岛设备在役检查可达性设计分析与应用[J]. 设备管理与维修,2016(7): 15-17. doi: 10.16621/j.cnki.issn1001-0599.2016.07.05
    [3]
    郗海英,王琪,范岩成. 核电厂风险指引型管道在役检查应用研究[J]. 核科学与工程,2012, 32(S1): 83-90.
    [4]
    齐敦杰,郭亮. 核电厂在役检查技术验证方法对比[J]. 核动力工程,2012, 33(3): 100-103.
    [5]
    王庆武. 核电厂在役检查探讨[J]. 中国核电,2008, 1(2): 156-161.
    [6]
    葛亮,杨勇,徐旭光,等. ASME和RSE-M规范对核电设备役前及在役检查中缺陷分析方法的比较[J]. 无损检测,2017, 39(5): 99-103.
    [7]
    刘奎,欧阳标,李上平. RSE-M与ASME规范中反应堆压力容器焊缝超声波检验技术能力验证试块对比研究[J]. 科技视界,2020(19): 17-22.
    [8]
    卢威,刘云,张志鹏,等. 不锈钢管道焊缝验证试块制作工艺对缺陷超声测长的影响[J]. 无损检测,2019, 41(1): 14-17,52.
    [9]
    吕永飞,李广. AP1000核电机组主管道焊接技术研究[J]. 焊接技术,2017, 46(10): 41-43.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (112) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return