Advance Search
Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Zhang Sifan, Liu Zhouyu, Zhao Hanbing, Chen Xing, Wang Bo. Treatment Method of Control Rod Cusping Effect in 2D/1D Coupled Characteristics Transport Calculation[J]. Nuclear Power Engineering, 2023, 44(6): 23-31. doi: 10.13832/j.jnpe.2023.06.0023
Citation: Zhang Sifan, Liu Zhouyu, Zhao Hanbing, Chen Xing, Wang Bo. Treatment Method of Control Rod Cusping Effect in 2D/1D Coupled Characteristics Transport Calculation[J]. Nuclear Power Engineering, 2023, 44(6): 23-31. doi: 10.13832/j.jnpe.2023.06.0023

Treatment Method of Control Rod Cusping Effect in 2D/1D Coupled Characteristics Transport Calculation

doi: 10.13832/j.jnpe.2023.06.0023
  • Received Date: 2023-01-03
  • Rev Recd Date: 2023-08-10
  • Available Online: 2023-12-11
  • Publish Date: 2023-12-15
  • On the basis of 2D/1D coupled characteristics transport, the treatment method of cusping effect of control rod movement are studied, including adaptive mesh method and bidirectional homogenization method. In the bidirectional homogenization method, the homogenization error is reduced by establishing radial flux profile and axial flux profile. The control rod movement function is implemented in high fidelity numerical reactor code NECP-X. The treatment of the control rod cusping effect is verified by the C5G7-TD benchmark and VERA #5 benchmark. The numerical results show that the adaptive mesh method and the bidirectional homogenization method both have high accuracy in the calculation of control rod value and core power. The control rod cusping effect caused by bidirectional homogenization can be well corrected by flux profile.

     

  • loading
  • [1]
    YAMAMOTO A. A simple and efficient control rod cusping model for three-dimensional pin-by-pin core calculations[J]. Nuclear Technology, 2004, 145(1): 11-17. doi: 10.13182/NT145-11
    [2]
    CHO B, CHO N Z. A nonoverlapping local/global iterative method with 2-D/1-D fusion transport kernel and p-CMFD wrapper for transient reactor analysis[J]. Annals of Nuclear Energy, 2015, 85: 937-957. doi: 10.1016/j.anucene.2015.07.012
    [3]
    GRAHAM, AARON M, COLLINS, et al. Subplane-based control rod decusping techniques for the 2D/1D method in MPACT[C]//International Conference on Mathematics & Computational Methods Applied to Nuclear Science& Engineering, Jeju: USB, 2017.
    [4]
    CHO H H, KANG J, YOON J I, et al. Analysis of C5G7-TD benchmark with a multi-group pin homogenized SP3 code SPHINCS[J]. Nuclear Engineering and Technology, 2021, 53(5): 1403-1415. doi: 10.1016/j.net.2020.11.013
    [5]
    王博. 核反应堆高保真物理热工耦合瞬态分析方法研究及其应用[D]. 西安: 西安交通大学, 2021.
    [6]
    HOU J, IVANOV K N, BOYARINOV V F, et al. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization[J]. Nuclear Engineering and Design, 2017, 317: 177-189. doi: 10.1016/j.nucengdes.2017.02.008
    [7]
    CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [8]
    ORNL. VERA Core Physics Benchmark Progression Problem Specifications: CASL-U-2012-0131-004 [R]. Tennessee: Oak Ridge National Laboratory, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (100) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return