Citation: | Xiao Xiang, Gao Sanjie, Gao Guangyong, Wen Junhao, Jiang Weiyu. Research on Key Technology of Fuel Rod Oxide Film Thickness Measurement System[J]. Nuclear Power Engineering, 2023, 44(6): 237-241. doi: 10.13832/j.jnpe.2023.06.0237 |
[1] |
许俊龙,马官兵,王贤彬,等. 核反应堆燃料组件的无损检测和修复[J]. 无损检测,2014,36(11):38-41.
|
[2] |
倪星河. 轻水堆燃料严重损伤实验的模拟和锆包壳氧化产氢及释氢模型的研究[D]. 厦门:厦门大学,2018.
|
[3] |
周邦新. 改善锆合金耐腐蚀性能的概述[J]. 金属热处理学报,1997,18(3):8-15.
|
[4] |
李磊豪,董冰,李晨悦,等. 燃料包壳破损条件下裂变气体释放模拟实验研究[J]. 核技术,2019,42(12):120601.
|
[5] |
钱进,郭一帆,王鑫,等. 破损燃料棒二次氢化行为观察与分析[J]. 原子能科学技术,2020,54(8):1487-1493.
|
[6] |
王华才,程焕林,郭丽娜,等. Zr-Nb合金包壳管氧化膜的微观结构[J]. 腐蚀与防护,2022,43(7):67-73,116.
|
[7] |
XIAO X, GAO B, TIAN G Y, et al. Novel ultrasound system with intelligent compensation for high precision measurement of thin wall tube[J]. IEEE Sensors Journal, 2018, 18(16): 6633-6643. doi: 10.1109/JSEN.2018.2826547
|
[8] |
XIAO X, ZHOU G Z, WANG K Q, et al. Study on in-service inspection of nuclear fuel assembly failure using ultrasonic plate wave[J]. Sensors, 2022, 22(19): 7606. doi: 10.3390/s22197606
|
[9] |
燕芳,王志春,丁东阳. 电涡流测厚系统特征值提取方法[J]. 传感器与微系统,2019,38(7):18-20.
|
[10] |
程曦,周国正,唐西明,等. 基于涡流技术的燃料棒氧化膜测量信号有效性评估与统计[J]. 核动力工程,2020,41(1):49-53.
|
[11] |
罗曼. 压水堆乏燃料元件包壳表面氧化膜厚度测量技术研究[J]. 科技资讯,2021,19(9):63-65,70.
|
[12] |
SETHURAMAN A, ROSE J H. Rapid inversion of eddy current data for conductivity and thickness of metal coatings[J]. Journal of Nondestructive Evaluation, 1995, 14(1): 39-46. doi: 10.1007/BF00735670
|
[13] |
任亮,李国云,江林志,等. 压水堆燃料组件池边检查技术研究进展[J]. 科技导报,2015,33(18):91-95.
|
[14] |
FERNÁNDEZ J R, GUERRA J. Fuel rod inspection system, SICOM-ROD[C]. Hungary: Proceedings of the 6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components. Budapest: NDT, 2007: 810.
|
[15] |
陈波,李映辉,李翔宇. 关于伽辽金法的一点注记[J]. 力学与实践,2022,44(2):393-396.
|