Advance Search
Volume 44 Issue S1
Jun.  2023
Turn off MathJax
Article Contents
Shen Cong, Liu Maolong, Cheng Kun, Liu Limin, Xu Ziyi, Gu Hanyang. Numerical Investigation of LBE Flow and Heat Transfer Characteristics in Helical-coiled Tube Bundles with Different Coil Strategies[J]. Nuclear Power Engineering, 2023, 44(S1): 57-61. doi: 10.13832/j.jnpe.2023.S1.0057
Citation: Shen Cong, Liu Maolong, Cheng Kun, Liu Limin, Xu Ziyi, Gu Hanyang. Numerical Investigation of LBE Flow and Heat Transfer Characteristics in Helical-coiled Tube Bundles with Different Coil Strategies[J]. Nuclear Power Engineering, 2023, 44(S1): 57-61. doi: 10.13832/j.jnpe.2023.S1.0057

Numerical Investigation of LBE Flow and Heat Transfer Characteristics in Helical-coiled Tube Bundles with Different Coil Strategies

doi: 10.13832/j.jnpe.2023.S1.0057
  • Received Date: 2022-12-02
  • Rev Recd Date: 2023-05-08
  • Publish Date: 2023-06-15
  • Helical tube once-through steam generators (H-OTSG) are widely used in the design of liquid metal reactors, in which adjacent radial tube bundles can be coiled in the same direction or opposite direction, and different coil strategies will affect the flow behavior on the shell side of the steam generator. To explore the lead-bismuth eutectic (LBE) flow and heat transfer characteristics in helical tube bundles with different coil strategies, the shear stress transport (SST k-ω) model, turbulence model and Kays turbulent Prandtl number (Prt) model are used for numerical simulation. First, the numerical method is validated by existing experiments of liquid metal flow cross tube banks. Then, helical-coiled tube bundles with the same coiling direction and alternate coiling direction are established, and the differences in heat transfer and flow resistance are compared. Finally, the reason for the differences is analyzed from the perspective of the flow field. The results show that the flow resistance and heat transfer in the helical-coiled tube bundle with alternate coiling direction are 7.1% and 4.4% higher than those with the same coiling direction respectively. This is due to the stronger turbulent mixing and more uniform velocity field in the alternate-coiled bundle.

     

  • loading
  • [1]
    屠传经,陈学俊. 螺旋管式蒸汽发生器的流动与换热特性[J]. 核动力工程,1982, 3(5): 52-60.
    [2]
    LI X W, WU X X, HE S Y. Numerical investigation of the turbulent cross flow and heat transfer in a wall bounded tube bundle[J]. International Journal of Thermal Sciences, 2014, 75: 127-139. doi: 10.1016/j.ijthermalsci.2013.08.001
    [3]
    赵后剑,谢箫阳,高伟凯,等. 液态铅铋合金横掠管束对流换热数值计算[J]. 工程热物理学报,2021, 42(7): 1837-1843.
    [4]
    HOE I R, DROPKIN D, DWYER O. Heat-transfer rates to crossflowing mercury in a staggered Tube Bank-I[J]. Transactions of the ASME, 1957, 79(4): 899-905.
    [5]
    RICKARD C L, DWYER O E, DROPKIN D. Heat-transfer rates to cross-flowing mercury in a staggered tube Bank—II[J]. Transactions of the ASME, 1958, 80(3): 646-652.
    [6]
    CESS R D, GROSH R J. Heat transmission to fluids with low prandtl numbers for flow through tube banks[J]. Transactions of the ASME, 1958, 80(3): 677-681.
    [7]
    HSU C J. Analytical study of heat transfer to liquid metals in cross-flow through rod bundles[J]. International Journal of Heat and Mass Transfer, 1964, 7(4): 431-446. doi: 10.1016/0017-9310(64)90135-8
    [8]
    KALISH S, DWYER O E. Heat transfer to NaK flowing through unbaffled rod bundles[J]. International Journal of Heat and Mass Transfer, 1967, 10(11): 1533-1558. doi: 10.1016/0017-9310(67)90006-3
    [9]
    DUAN R Q, JIANG S Y. Numerical investigation of gas flow distribution and thermal mixing in helically coiled tube bundle[J]. Journal of Nuclear Science and Technology, 2008, 45(7): 704-711. doi: 10.1080/18811248.2008.9711470
    [10]
    GAO W K, XIE X Y, LI X W, et al. Influence of coiling direction of helical tube bundles on the thermal-hydraulics of the HTGR steam generator[J]. Journal of Physics:Conference Series, 2021, 2048: 012032. doi: 10.1088/1742-6596/2048/1/012032
    [11]
    MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [12]
    KAYS W M. Turbulent Prandtl number−Where are we?[J]. Journal of Heat Transfer, 1994, 116(2): 284-295. doi: 10.1115/1.2911398
    [13]
    FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition-Introduction[R]. Paris: OECD, 2016.
    [14]
    ŽUKAUSKAS A, ULINSKAS R. Efficiency parameters for heat transfer in tube banks[J]. Heat Transfer Engineering, 1985, 6(1): 19-25. doi: 10.1080/01457638508939614
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (319) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return