Citation: | Zhang Tao, Han Wenbin, Shen Pengfei, Huang Shanfang, Wang Kan. Neutronic and Thermal-Hydraulic Performance Analysis of Helical Cruciform Fuel Rods[J]. Nuclear Power Engineering, 2023, 44(S1): 69-74. doi: 10.13832/j.jnpe.2023.S1.0069 |
[1] |
邢继,高力,霍小东,等. “碳达峰、碳中和”背景下核能利用浅析[J]. 核科学与工程,2022, 42(1): 10-17. doi: 10.3969/j.issn.0258-0918.2022.01.002
|
[2] |
DIAKOV A C, DMITRIEV A M, KANG J, et al. Feasibility of converting Russian icebreaker reactors from HEU to LEU fuel[J]. Science & Global Security, 2006, 14(1): 33-48.
|
[3] |
AGEENKOV V I, VOLKOV V S, SOLONIN M I, et al. Parameters and technology for fabricating PIK reactor fuel elements[J]. Atomic Energy, 2002, 92(6): 468-474. doi: 10.1023/A:1020262131193
|
[4] |
BOL’SHAKOV V V, BASHKIRTSEV S M, KOBZAR’ L L, et al. Experimental study of burnout in channels with twisted fuel rods[J]. Thermal Engineering, 2007, 54(5): 386-389. doi: 10.1134/S0040601507050096
|
[5] |
CONBOY T M. Assessment of helical-cruciform fuel rods for high power density LWRs[D]. Cambridge: Massachusetts Institute of Technology, 2010.
|
[6] |
ZHANG Q, LIU L, XIAO Y, et al. Experimental study on the transverse mixing of 5 × 5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582
|
[7] |
SHIRVAN K, KAZIMI M S. Nuclear design of helical cruciform fuel rods[C]//PHYSOR 2012–Advances in Reactor Physics–Linking Research, Industry, and Education. Knoxville: American Nuclear Society, 2012.
|
[8] |
SHIRVAN K, KAZIMI M S. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates[J]. Nuclear Engineering and Design, 2014, 270: 259-272. doi: 10.1016/j.nucengdes.2014.01.015
|
[9] |
蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593
|
[10] |
刘畅. 螺旋型燃料棒束内流动与换热特性数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
[11] |
FANG Y L, QIN H, WANG C L, et al. Numerical investigation on thermohydraulic performance of high temperature hydrogen in twisted rod channels[J]. Annals of Nuclear Energy, 2021, 161: 108434. doi: 10.1016/j.anucene.2021.108434
|
[12] |
HARTMANN C, TOTEMEIER A, HOLCOMBE S, et al. Measurement station for interim inspections of Lightbridge metallic fuel rods at the Halden boiling water reactor[J]. EPJ Web of Conferences, 2018, 170: 04011. doi: 10.1051/epjconf/201817004011
|
[13] |
University of Wisconsin–Madison. DAGMC: direct accelerated geometry Monte Carlo[EB/OL]. (2021-07-08)[2022-05-05]. https://svalinn.github.io/DAGMC.
|
[14] |
LOVECKÝ M, ZÁVORKA J, VIMPEL J. VVER-1000 fuel assembly model in CAD-based unstructured mesh for MCNP6[J]. Kerntechnik, 2019, 84(4): 262-266. doi: 10.3139/124.190041
|
[15] |
WU Y C, SONG J, ZHENG H Q, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Annals of Nuclear Energy, 2015, 82: 161-168. doi: 10.1016/j.anucene.2014.08.058
|
[16] |
TALAMO A, GOHAR Y, LEPPÄNEN J. SERPENT validation and optimization with mesh adaptive search on stereolithography geometry models[J]. Annals of Nuclear Energy, 2018, 115: 619-632. doi: 10.1016/j.anucene.2018.01.012
|
[17] |
WANG K, LI Z G, SHE D, et al. RMC–a Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048
|
[18] |
SHEN P F, LIANG J G, LIU S C, et al. Implementation and verification of the DAGMC module in Monte Carlo code RMC[C]//Proceedings of the 29th International Conference on Nuclear Engineering. New York: American Society of Mechanical Engineers, 2022.
|