Advance Search
Volume 44 Issue S1
Jun.  2023
Turn off MathJax
Article Contents
Feng Mengjiao, Liu Minyun, Huang Shanfang, Huang YanPing. Design and Performance Investigation of Supercritical Carbon Dioxide Ejector[J]. Nuclear Power Engineering, 2023, 44(S1): 81-87. doi: 10.13832/j.jnpe.2023.S1.0081
Citation: Feng Mengjiao, Liu Minyun, Huang Shanfang, Huang YanPing. Design and Performance Investigation of Supercritical Carbon Dioxide Ejector[J]. Nuclear Power Engineering, 2023, 44(S1): 81-87. doi: 10.13832/j.jnpe.2023.S1.0081

Design and Performance Investigation of Supercritical Carbon Dioxide Ejector

doi: 10.13832/j.jnpe.2023.S1.0081
  • Received Date: 2023-03-01
  • Rev Recd Date: 2023-05-06
  • Publish Date: 2023-06-15
  • In order to minimize the negative impact of leakage gas produced on the stability of the supercritical carbon dioxide cycle without additional mechanical work consumption, an ejector that can pressurize and transport the leakage gas back to the cycle was designed in this paper based on the constant pressure mixing theory and the double choked critical state. The computational fluid dynamics software Fluent was used to simulate the model numerically, analyze the performance of the ejector, and investigate the effect of size parameters on the performance. The results show that the four-stage ejector can sequentially pressurize the 0.5 MPa leakage gas to 2.0, 4.4, 6.0 and 8.0 MPa, realizing the recovery and utilization of the leaked gas. The entrainment ratio is not affected by the back pressure when the back pressure is less than the critical pressure. The entrainment ratio decreases sharply with the increase of the back pressure when the back pressure is greater than the critical pressure. The entrainment ratio increases with the diminution of the inlet area. The entrainment ratio increases first and then decreases with the increase of the contraction angle of the nozzle, and reaches maximum while the contraction angle is 20°.

     

  • loading
  • [1]
    吴攀,高春天,单建强. 超临界二氧化碳布雷顿循环在核能领域的应用[J]. 现代应用物理,2019, 10(3): 79-88.
    [2]
    邹久朋,高慎琴. 蒸汽喷射压缩器的实验研究[J]. 石油化工设备,1987, 16(8): 13-17,50.
    [3]
    张于峰,赵薇,田琦,等. 喷射器性能及太阳能喷射制冷系统工质的优化[J]. 太阳能学报,2007, 28(2): 130-136. doi: 10.3321/j.issn:0254-0096.2007.02.004
    [4]
    CAO H S, TER BRAKE H J M. Progress and challenges in utilization of ejectors for cryogenic cooling[J]. Applied Thermal Engineering, 2020, 167: 114783. doi: 10.1016/j.applthermaleng.2019.114783
    [5]
    严正,陈嘉翔,尚久浩. 装锅器用汽—液喷射器工作特性分析及实验研究[J]. 西北轻工业学院学报,1997, 15(3): 14-18.
    [6]
    袁惠达,杨磊. R12喷射制冷系统最佳参数的实验研究[J]. 西安冶金建筑学院学报,1989, 21(4): 43-50.
    [7]
    BOULENOUAR M, OUADHA A. CFD-Exergy analysis of the flow in a supersonic steam ejector[J]. Journal of Physics:Conference Series, 2015, 574(1): 012123.
    [8]
    ALLOUCHE Y, BOUDEN C, VARGA S. A CFD analysis of the flow structure inside a steam ejector to identify the suitable experimental operating conditions for a solar-driven refrigeration system[J]. International Journal of Refrigeration, 2014, 39: 186-195. doi: 10.1016/j.ijrefrig.2013.07.027
    [9]
    徐鑫. 喷射器内部流动及设计方法的研究[D]. 武汉: 华中科技大学, 2012.
    [10]
    张琦,霍杰鹏,王汝武,等. 蒸汽喷射器的CFD数值模拟及其性能[J]. 东北大学学报:自然科学版,2010, 31(3): 398-401.
    [11]
    王景富,许恒,张东洋,等. 蒸汽喷射压缩器性能的三维数值模拟[J]. 热能动力工程,2022, 37(2): 79-83. doi: 10.16146/j.cnki.rndlgc.2022.02.011
    [12]
    OUZZANE M, AIDOUN Z. Model development and numerical procedure for detailed ejector analysis and design[J]. Applied Thermal Engineering, 2003, 23(18): 2337-2351. doi: 10.1016/S1359-4311(03)00208-4
    [13]
    丁宝存,杨洪源,张琨. 喷射器理论发展的论述[J]. 区域供热,2013(1): 65-67,74. doi: 10.3969/j.issn.1005-2453.2013.01.011
    [14]
    TASHTOUSH B M, AL-NIMR M A, KHASAWNEH M A. A comprehensive review of ejector design, performance, and applications[J]. Applied Energy, 2019, 240: 138-172. doi: 10.1016/j.apenergy.2019.01.185
    [15]
    TALEGHANI S T, SORIN M, PONCET S. Modeling of two-phase transcritical CO2 ejectors for on-design and off-design conditions[J]. International Journal of Refrigeration, 2018, 87: 91-105. doi: 10.1016/j.ijrefrig.2017.10.025
    [16]
    邓小妹. 基于布雷顿动力循环的超临界二氧化碳喷射器设计及仿真分析[D]. 济南: 山东大学, 2021.
    [17]
    高宇明,王建军. 喷射器内流场数值分析[J]. 应用科技,2016, 43(6): 72-77,86.
    [18]
    SONG Y L, MA Y, WANG H D, et al. Review on the simulation models of the two-phase-ejector used in the transcritical carbon dioxide systems[J]. International Journal of Refrigeration, 2020, 119: 434-447. doi: 10.1016/j.ijrefrig.2020.04.029
    [19]
    LI R X, YAN J, REDDICK C. Optimization of three key ejector geometries under fixed and varied operating conditions: A numerical study[J]. Applied Thermal Engineering, 2022, 211: 118537. doi: 10.1016/j.applthermaleng.2022.118537
    [20]
    ZHENG L X, HU H W, WANG W B, et al. Study on flow distribution and structure optimization in a mix chamber and diffuser of a CO2 two-phase ejector[J]. Mathematics, 2022, 10(5): 693. doi: 10.3390/math10050693
    [21]
    LI Y Q, SHEN S Q, NIU C, et al. The effect of different pressure conditions on shock waves in a supersonic steam ejector[J]. Energies, 2022, 15(8): 2903. doi: 10.3390/en15082903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (296) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return