Citation: | Jiang Kecheng, Yu Yi, Ma Xuebin, Chen Lei, Liu Songlin. Thermal-mechanic Analysis on COOL Blanket for CFETR[J]. Nuclear Power Engineering, 2023, 44(S1): 101-107. doi: 10.13832/j.jnpe.2023.S1.0101 |
[1] |
WAN Y X, LI J G, LIU Y, et al. Overview of the present progress and activities on the CFETR[J]. Nuclear Fusion, 2017, 57(10): 102009. doi: 10.1088/1741-4326/aa686a
|
[2] |
ZHUANG G, LI G Q, LI J, et al. Progress of the CFETR design[J]. Nuclear Fusion, 2019, 59(11): 112010. doi: 10.1088/1741-4326/ab0e27
|
[3] |
PÉREZ RAMÍREZ A S, CASO A, GIANCARLI L, et al. Tauro: a ceramic composite structural material self-cooled Pb—17Li breeder blanket concept[J]. Journal of Nuclear Materials, 1996, 233-237: 1257-1261. doi: 10.1016/S0022-3115(96)00147-X
|
[4] |
SZE D K, BILLONE M C, HUA T Q, et al. The ARIES-RS power core—recent development in Li/V designs[J]. Fusion Engineering and Design, 1998, 41(1-4): 371-376. doi: 10.1016/S0920-3796(97)00144-0
|
[5] |
WANG X R, TILLACK M S, KOEHLY C, et al. ARIES-ACT1 system configuration, assembly, and maintenance[J]. Fusion Science and Technology, 2015, 67(1): 22-48. doi: 10.13182/FST14-797
|
[6] |
DEL NEVO A, ARENA P, CARUSO G, et al. Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project[J]. Fusion Engineering and Design, 2019, 146: 1805-1809. doi: 10.1016/j.fusengdes.2019.03.040
|
[7] |
BOULLON R, AUBERT J, AIELLO G, et al. The DEMO helium cooled lithium lead "advanced-plus" breeding blanket: design improvement and FEM studies[J]. Fusion Engineering and Design, 2019, 146: 2026-2030. doi: 10.1016/j.fusengdes.2019.03.092
|
[8] |
WU Y, FDS Team. Conceptual design of the China fusion power plant FDS-II[J]. Fusion Engineering and Design, 2008, 83(10-12): 1683-1689. doi: 10.1016/j.fusengdes.2008.06.048
|
[9] |
FERNÁNDEZ-BERCERUELO I, PALERMO I, URGORRI F R, et al. Remarks on the performance of the EU DCLL breeding blanket adapted to DEMO 2017[J]. Fusion Engineering and Design, 2020, 155: 111559. doi: 10.1016/j.fusengdes.2020.111559
|
[10] |
WANG X R, TILLACK M S, KOEHLY C, et al. ARIES-ACT2 DCLL power core design and engineering[J]. Fusion Science and Technology, 2015, 67(1): 193-219. doi: 10.13182/FST14-798
|
[11] |
CHEN L, JIANG K C, MA X B, et al. Conceptual design of the supercritical CO2 cooled lithium lead blanket for CFETR[J]. Fusion Engineering and Design, 2021, 173: 112800. doi: 10.1016/j.fusengdes.2021.112800
|
[12] |
WU Q R, LU P, ZHANG X K, et al. Neutronics analyses of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 179: 113130. doi: 10.1016/j.fusengdes.2022.113130
|
[13] |
SKUPINSKI E, TORTEL J, VAUTREY L. Determination des coefficients de convection d’un alliage sodium-potassium dans un tube circulaire[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 937-940, IN3-IN4, 941-951.
|
[14] |
JIANG K C, YU Y, MA X B, et al. Research on the thermal hydraulic design of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 176: 113053. doi: 10.1016/j.fusengdes.2022.113053
|
[15] |
CIUCANI U M, PANTLEON W. Stagnant recrystallization in warm-rolled tungsten in the temperature range from 1150℃ to 1300℃[J]. Fusion Engineering and Design, 2019, 146: 814-817. doi: 10.1016/j.fusengdes.2019.01.088
|
[16] |
TAN L, BYUN T S, KATOH Y, et al. Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation[J]. Acta Materialia, 2014, 71: 11-19. doi: 10.1016/j.actamat.2014.03.015
|
[17] |
SANNAZZARO G, BARABASH V, KANG S C, et al. Development of design criteria for ITER in-vessel components[J]. Fusion Engineering and Design, 2013, 88(9-10): 2138-2141. doi: 10.1016/j.fusengdes.2013.01.019
|
[1] | Li Liangxing, Shi Shang, Zhao Haoxiang, Zhao Jiayuan. Design and Multi-Objective Optimization Study of Liquid Lead-Supercritical Carbon Dioxide Heat Exchanger[J]. Nuclear Power Engineering, 2024, 45(4): 196-204. doi: 10.13832/j.jnpe.2024.04.0196 |
[2] | Liu Zhu, Zhou Qiyin, Zhang Lefu, Long Jiachen, Gao Yang, Guo Xianglong. Study on General Corrosion Behavior of Two Alumina-forming Austenitic Stainless Steels in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2023, 44(5): 290-297. doi: 10.13832/j.jnpe.2023.05.0290 |
[3] | Huang Junlin, Li Chao, Zhu Xiaoliang, Tu Yiyou, Xu Qinglan. Novel Measurement Method for Shear Failure Strength of Oxide Scales on Inner Surface of Supercritical Carbon Dioxide PCHE[J]. Nuclear Power Engineering, 2023, 44(S2): 115-119. doi: 10.13832/j.jnpe.2023.S2.0115 |
[4] | Zhang Dongxu, Li Weiqing, Zhao Minfu, Liang Peng, Xu Yongwang, Li Qingyuan, Duan Minghui. Experimental Study on Critical Flow of Supercritical Carbon Dioxide at Transient State[J]. Nuclear Power Engineering, 2023, 44(5): 232-236. doi: 10.13832/j.jnpe.2023.05.0232 |
[5] | Zong Yi, Zhuang Kun, Lu Di, Qi Shengdong. Study on Reactivity Disturbance Characteristics of SCO2 Reactor Assembly Caused by Burnable Poisons[J]. Nuclear Power Engineering, 2023, 44(S2): 153-159. doi: 10.13832/j.jnpe.2023.S2.0153 |
[6] | Huang Jiajian, Zhou Yuan, Huang Yanping, Luo Qiao, Hu Wei. Experimental Study on Flow Instability in Parallel Channels with Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2023, 44(4): 220-225. doi: 10.13832/j.jnpe.2023.04.0220 |
[7] | Feng Mengjiao, Liu Minyun, Huang Shanfang, Huang YanPing. Design and Performance Investigation of Supercritical Carbon Dioxide Ejector[J]. Nuclear Power Engineering, 2023, 44(S1): 81-87. doi: 10.13832/j.jnpe.2023.S1.0081 |
[8] | Ma Zhaodandan, Cong Shuo, Chen Yong, Guo Xianglong, Zhang Ruiqian, Liu Zhu, Zhang Xian. Corrosion Behavior of Alumina-forming Austenitic Heat Resistant Steel in Supercritical Carbon Dioxide[J]. Nuclear Power Engineering, 2022, 43(6): 101-107. doi: 10.13832/j.jnpe.2022.06.0101 |
[9] | Lu Heng, Zhao Heng, Dai Ye, Chen Xingwei, Jia Guobin, Zou Yang. MSR Supercritical Carbon Dioxide Brayton Cycle System and Thermodynamic Analysis[J]. Nuclear Power Engineering, 2022, 43(2): 32-39. doi: 10.13832/j.jnpe.2022.02.0032 |
[10] | Wang Junfeng, Wang Yangle, Zhou Yuan, Huang Yanping. Investigations on Supercritical CO2 Critical Flow through Mini Tubes[J]. Nuclear Power Engineering, 2021, 42(2): 35-38. doi: 10.13832/j.jnpe.2021.02.0035 |
[11] | Zhou Bing, Wang Xiaoyu, Wang Yanling, Hu bo. Safety Analysis of China Fusion Engineering Test Reactor Helium Cooled Blanket[J]. Nuclear Power Engineering, 2021, 42(S2): 29-32. doi: 10.13832/j.jnpe.2021.S2.0029 |
[12] | Liu Shenghui, Huang Yanping, Liu Guangxu, Wang Junfeng, Wang Jinyu. Influence of Gas State Equations on Acceleration Parameter for Heat Transfer to Supercritical Carbon Dioxide Flowing in Heated Tubes[J]. Nuclear Power Engineering, 2019, 40(1): 18-22. doi: 10.13832/j.jnpe.2019.01.0018 |
[13] | Liu Shenghui, Huang Yanping, Liu Guangxu, Wang Junfeng, Zan Yuanfeng, Lang Xuemei, Huang Jun. Investigation of Correlation for Forced Convective Heat Transfer to Supercritical Carbon Dioxide Flowing in a Vertical Tube[J]. Nuclear Power Engineering, 2017, 38(1): 1-5. doi: 10.13832/j.jnpe.2017.01.0001 |
[14] | Liu Shenghui, Huang Yanping, Liu Guangxu, Wang Junfeng, Zan Yuanfeng, Lang Xuemei. Numerical Investigation of Buoyancy Effect in Forced Convective Heat Transfer to Supercritical Carbon Dioxide Flowing in a Tube[J]. Nuclear Power Engineering, 2016, 37(6): 18-22. doi: 10.13832/j.jnpe.2016.06.0018 |
[15] | Huang Xiaoli, Wang Junfeng, Zang Jinguang. Thermodynamic Analysis of Coupling Supercritical Carbon Dioxide Brayton Cycles[J]. Nuclear Power Engineering, 2016, 37(3): 34-38. doi: 10.13832/j.jnpe.2016.03.0034 |
[16] | Liu Shenghui, Huang Yanping, Liu Guangxu, Wang Junfeng, Zhao Dawei, Zang Jinguang, Zan Yuanfeng, Lang Xuemei, Xu Jianjun. Numerical Investigation of Heat Transfer Characteristics of Supercritical Carbon Dioxide in Double D-Shape Channel[J]. Nuclear Power Engineering, 2016, 37(2): 56-59. doi: 10.13832/j.jnpe.2016.02.0056 |
[17] | Huang Yanping, Liu Shenghui, Liu Guangxu, Wang Junfeng, Zan Yuanfeng, Lang Xuemei. Evaluation and Analysis of Forced Convection Heat Transfer Correlations for Supercritical Carbon Dioxide in Tubes[J]. Nuclear Power Engineering, 2016, 37(1): 28-33. doi: 10.13832/j.jnpe.2016.01.0028 |
[18] | Liu Guangxu, Huang Yanping, Wang Junfeng, Zan Yuanfeng, Lang Xuemei. Experimental Investigation of Supercritical Carbon Dioxide Natural Circulation in Rectangular Loop[J]. Nuclear Power Engineering, 2015, 36(3): 31-35. doi: 10.13832/j.jnpe.2015.03.0031 |
[19] | Huang Yanping, Liu Guangxu, Wang Junfeng, LÜ; Fa. Evaluation of Heat Transfer Correlations for Supercritical Carbon Dioxide in Circular Tubes under Heating Conditions[J]. Nuclear Power Engineering, 2014, 35(3): 1-5. doi: 10.13832/j.jnpe.2014.03.0001 |
[20] | HUANG Yanping, WANG Junfeng. Applications of Supercritical Carbon Dioxide in Nuclear Reactor System[J]. Nuclear Power Engineering, 2012, 33(3): 21-27. |
1. | 罗浩东,林燕,李斌,向魁,朱光涛,曾涛. CFETR核聚变发电厂储热技术对比. 核技术. 2024(05): 131-139 . ![]() |