Advance Search
Volume 44 Issue S1
Jun.  2023
Turn off MathJax
Article Contents
Zhao Xuebin, Huang Yanping, Ye Lyu. Prediction of Fluid Critical Point Based on Molecular Dynamics Simulation[J]. Nuclear Power Engineering, 2023, 44(S1): 108-112. doi: 10.13832/j.jnpe.2023.S1.0108
Citation: Zhao Xuebin, Huang Yanping, Ye Lyu. Prediction of Fluid Critical Point Based on Molecular Dynamics Simulation[J]. Nuclear Power Engineering, 2023, 44(S1): 108-112. doi: 10.13832/j.jnpe.2023.S1.0108

Prediction of Fluid Critical Point Based on Molecular Dynamics Simulation

doi: 10.13832/j.jnpe.2023.S1.0108
  • Received Date: 2023-03-04
  • Rev Recd Date: 2023-04-05
  • Publish Date: 2023-06-15
  • The critical points of CO2 and H2O were predicted using molecular dynamics simulations, and relatively accurate critical points were obtained by extrapolating properties under the vapour-liquid equilibrium. For CO2, the simulations were carried out with TraPPE and a coarse-grained model, SAFT. The results simulated by TraPPE are in better agreement with experimental data of National Institute of Standards and Technology (NIST). Potential models of SPC/E and TIP4P/2005 were used to evaluate the critical point parameters for H2O. The results suggest that the predicted values with TIP4P/2005 are closest to the experimental data of NIST, and there are still challenges to accurately predict the saturated vapor pressure of molecular water system.

     

  • loading
  • [1]
    SODEIFIAN G, GARLAPATI C, RAZMIMANESH F, et al. The solubility of Sulfabenzamide (an antibacterial drug) in supercritical carbon dioxide: evaluation of a new thermodynamic model[J]. Journal of Molecular Liquids, 2021, 335: 116446. doi: 10.1016/j.molliq.2021.116446
    [2]
    KIKIC I, VECCHIONE F. Supercritical impregnation of polymers[J]. Current Opinion in Solid State and Materials Science, 2003, 7(4-5): 399-405. doi: 10.1016/j.cossms.2003.09.001
    [3]
    LI X L, TANG G H, FAN Y H, et al. A performance recovery coefficient for thermal-hydraulic evaluation of recuperator in supercritical carbon dioxide Brayton cycle[J]. Energy Conversion and Management, 2022, 256: 115393. doi: 10.1016/j.enconman.2022.115393
    [4]
    JAEGER F, MATAR O K, MÜLLER E A. Bulk viscosity of molecular fluids[J]. The Journal of Chemical Physics, 2018, 148(17): 174504. doi: 10.1063/1.5022752
    [5]
    MÜLLER E A, JACKSON G. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations[J]. Annual Review of Chemical and Biomolecular Engineering, 2014, 5: 405-427. doi: 10.1146/annurev-chembioeng-061312-103314
    [6]
    BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271. doi: 10.1021/j100308a038
    [7]
    ABASCAL J L F, VEGA C. A general purpose model for the condensed phases of water: TIP4P/2005[J]. The Journal of Chemical Physics, 2005, 123(23): 234505. doi: 10.1063/1.2121687
    [8]
    LINSTROM P J, MALLARD W G. NIST chemistry WebBook, NIST standard reference database number 69[M]. Gaithersburg: National Institute of Standards and Technology, 2023.
    [9]
    DEE G T, SAUER B B. The principle of corresponding states for polymer liquid surface tension[J]. Polymer, 1995, 36(8): 1673-1681. doi: 10.1016/0032-3861(95)99013-K
    [10]
    ROIZARD D. Antoine equation[M]//DRIOLI E, GIORNO L. Encyclopedia of Membranes. Berlin, Heidelberg: Springer, 2016: 1-3.
    [11]
    KHMELINSKII I, WOODCOCK L V. Supercritical fluid gaseous and liquid states: a review of experimental results[J]. Entropy, 2020, 22(4): 437. doi: 10.3390/e22040437
    [12]
    VEGA C, DE MIGUEL E. Surface tension of the most popular models of water by using the test-area simulation method[J]. The Journal of Chemical Physics, 2007, 126(15): 154707. doi: 10.1063/1.2715577
    [13]
    Representation of the surface tension of ordinary water Substance[C]//2014 International Association for the Properties of Water and Steam. Moscow, Russia, 23-27 June, 2014.
    [14]
    VEGA C, SANZ E, ABASCAL J L F. The melting temperature of the most common models of water[J]. The Journal of Chemical Physics, 2005, 122(11): 114507. doi: 10.1063/1.1862245
    [15]
    FINNEY J L. The water molecule and its interactions: the interaction between theory, modelling, and experiment[J]. Journal of Molecular Liquids, 2001, 90(1-3): 303-312. doi: 10.1016/S0167-7322(01)00134-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (425) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return