Citation: | Zhuo Weiqian. Research on U-Zr-based Metallic Fuel Additives and Performance Improvement for Fuel-Cladding Chemical Interaction and Phase Optimization[J]. Nuclear Power Engineering, 2023, 44(S1): 158-162. doi: 10.13832/j.jnpe.2023.S1.0158 |
[1] |
KITTEL J H, FROST B R T, MUSTELIER J P, et al. History of fast reactor fuel development[J]. Journal of Nuclear Materials, 1993, 204: 1-13. doi: 10.1016/0022-3115(93)90193-3
|
[2] |
HARP J M, CAPRIOTTI L, CAPPIA F. Postirradiation examination of recently irradiated metallic fuel concepts: INL/CON-18-51782-Rev000[R]. Idaho Falls: Idaho National Laboratory, 2018.
|
[3] |
OGATA T. Metal fuel[J]. Comprehensive Nuclear Materials (Second Edition), 2020, 5: 1-42.
|
[4] |
ZHUO W. Development of fuel additive and alloy for sodium-cooled fast reactor[D]. United States: Virginia Tech, 2022.
|
[5] |
HOFMAN G L, WALTERS L C, BAUER T H. Metallic fast reactor fuels[J]. Progress in Nuclear Energy, 1997, 31(1-2): 83-110. doi: 10.1016/0149-1970(96)00005-4
|
[6] |
JANNEY D E, HAYES S L. Experimentally known properties of U-10Zr alloys: a critical review[J]. Nuclear Technology, 2018, 203(2): 109-128. doi: 10.1080/00295450.2018.1435137
|
[7] |
CARMACK W J, PORTER D L, CHANG Y I, et al. Metallic fuels for advanced reactors[J]. Journal of Nuclear Materials, 2009, 392(2): 139-150. doi: 10.1016/j.jnucmat.2009.03.007
|
[8] |
WRIGHT A E, HAYES S L, BAUER T H, et al. Development of advanced ultra-high burnup SFR metallic fuel concept – Project overview[J]. Transactions of the American Nuclear Society, 2012, 106: 1102-1105.
|
[9] |
MATTHEWS C, UNAL C, GALLOWAY J, et al. Fuel-cladding chemical interaction in U-Pu-Zr metallic fuels: a critical review[J]. Nuclear Technology, 2017, 198(3): 231-259. doi: 10.1080/00295450.2017.1323535
|
[10] |
OKAMOTO H, SCHLESINGER M E, MUELLER E M. U (Uranium) binary alloy phase diagrams[M]. United States: ASM International, 2016, 3: 619.
|
[11] |
OKAMOTO H, SCHLESINGER M E, MUELLER E M. Ti (Titanium) binary alloy phase diagrams[M]. United States: ASM International, 2016, 3: 615
|
[12] |
JIANG C, MARIANI R D. Status report on the development of a thermodynamic database for use with metallic fuel design: INL/EXT-18-51293-Rev000[R]. Idaho Falls: Idaho National Laboratory, 2018.
|
[13] |
SOWA S, KIM-NGAN N T H, KRUPSKA M, et al. Superconductivity in U-T alloys (T = Mo, Pt, Nb, Zr) stabilized in the cubic γ-U structure[J]. Acta Physica Polonica A, 2016, 130(2): 521-526. doi: 10.12693/APhysPolA.130.521
|
[14] |
OKAMOTO H, SCHLESINGER M E, MUELLER E M. Nb (Niobium) binary alloy phase diagrams[M]. United States: ASM International, 2016, 3: 513.
|
[15] |
XIE Y, BENSON M T, KING J A, et al. Characterization of U-Zr fuel with alloying additive Sb for immobilizing fission product lanthanides[J]. Journal of Nuclear Materials, 2018, 498: 332-340. doi: 10.1016/j.jnucmat.2017.10.039
|
[16] |
ZHUO W Q, XIE Y, BENSON M T, et al. Experimental investigation of FCCI using diffusion couple test between UZr fuel with Sb additive and cladding[J]. Nuclear Science and Engineering, 2020, 194(6): 462-476. doi: 10.1080/00295639.2020.1713656
|
[17] |
ZHUO W Q, XIE Y, BENSON M T, et al. Experimental assessment of antimony (Sb) in pure uranium for immobilizing fission product lanthanides[J]. Journal of Nuclear Materials, 2020, 534: 152135. doi: 10.1016/j.jnucmat.2020.152135
|
[18] |
ZHUO W Q, WU H L, XIE Y, et al. Solid-state phase transitions of two quaternary metallic fuel alloys (U-2.5Mo-2.5Ti-5.0Zr and U-1.5Mo-1.5Ti-7.0Zr in wt. %)[J]. Journal of Nuclear Materials, 2021, 555: 153134. doi: 10.1016/j.jnucmat.2021.153134
|
[19] |
ZHUO W Q, WU H L, BENSON M T, et al. An investigation of the phase behaviors for quaternary U-Nb/Mo-Ti-Zr metallic fuel alloys[J]. Materials Today Communications, 2022, 30: 103042. doi: 10.1016/j.mtcomm.2021.103042
|