Advance Search
Volume 45 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
Yang Jihong, Chen Ling, Wang Xiaolong, Zhang Yongfa, Gao Ming. Research on Historical Anomaly Data Detection Technology for Nuclear Power Plant Based on Deep Auto-Encoder[J]. Nuclear Power Engineering, 2024, 45(2): 207-213. doi: 10.13832/j.jnpe.2024.02.0207
Citation: Yang Jihong, Chen Ling, Wang Xiaolong, Zhang Yongfa, Gao Ming. Research on Historical Anomaly Data Detection Technology for Nuclear Power Plant Based on Deep Auto-Encoder[J]. Nuclear Power Engineering, 2024, 45(2): 207-213. doi: 10.13832/j.jnpe.2024.02.0207

Research on Historical Anomaly Data Detection Technology for Nuclear Power Plant Based on Deep Auto-Encoder

doi: 10.13832/j.jnpe.2024.02.0207
  • Received Date: 2023-06-05
  • Rev Recd Date: 2023-08-03
  • Publish Date: 2024-04-12
  • In order to solve the problem of new anomaly identification difficulties in the detection of nuclear power historical anomaly data, according to the idea of reconstruction error, an anomaly detection model based on deep auto-encoder is proposed. The model takes the normal historical data under steady-state operating condition as the learning object, trains itself by minimizing the reconstruction error of the normal data, and judges whether the unknown data is abnormal according to the size of the reconstruction error. The research results show that the deep autoencoder has better ability to reconstruct normal data but insufficient ability to reconstruct abnormal data. Thus, by comparing the reconstruction error size, the deep autoencoder can effectively detect the historical abnormal data of nuclear power plant, and its performance is better than that of one-class support vector machine, which can provide relevant basis for the state evaluation of nuclear power plants.

     

  • loading
  • [1]
    石川聪彦. 用Python编程和实践!深度学习教科书[M]. 陈欢,译. 北京: 中国水利水电出版社,2021: 16.
    [2]
    孙宁可,王艳,纪志成. 基于深度自编码器的电力能耗异常检测方法[J]. 系统仿真学报,2022, 34(12): 2557-2565.
    [3]
    吴鑫. 基于VAE的多维时间序列异常检测方法研究[D]. 徐州: 中国矿业大学,2022.
    [4]
    李超能,冯冠文,刘如意,等. 一种基于重构误差的交通轨迹异常检测方法[J]. 计算机科学,2022, 49(2): 149-155.
    [5]
    SCHEIRER W J, DE REZENDE ROCHA A, SAPKOTA A, et al. Toward open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1757-1772. doi: 10.1109/TPAMI.2012.256
    [6]
    李傲. 基于机器学习算法的异常检测及其应用研究[D]. 哈尔滨: 哈尔滨工业大学,2021.
    [7]
    王晓龙,张永发,刘忠,等. 基于数据驱动的核动力系统异常检测及分析方法研究[J]. 核动力工程,2021, 42(5): 149-155.
    [8]
    周志华. 机器学习[M]. 北京: 清华大学出版社,2016: 28-67.
    [9]
    SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471. doi: 10.1162/089976601750264965
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (106) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return