Citation: | Zhang Hangzhou, Cao Junjie, Zhang Yongling, Sun Zhijun, Hu Dongmei, Lin Li, Wu Yao, Du Defu, Wang Shuai, Chen Xisan. Status and Prospect of Reactor Decommissioning Technology[J]. Nuclear Power Engineering, 2024, 45(3): 1-13. doi: 10.13832/j.jnpe.2024.03.0001 |
[1] |
International Atomic Energy Agency. Global status of decommissioning of nuclear installations: IAEA Nuclear Energy Series No. NW-T-2.16[R]. Vienna: IAEA, 2023.
|
[2] |
张生栋. 核设施退役与放射性废物治理关键技术[M]. 北京: 中国原子能出版社,2021: 17.
|
[3] |
曹俊杰,赵菀,王用超,等. 核电厂退役策略研究及建议[C]//中囯核学会. 中国核科学技术进展报告(第四卷)——中国核学会2015年学术年会论文集第8册(同位素分卷、辐射研究与应用分卷、核技术工业应用分卷、核农学分卷、核医学分卷、核情报分卷). 北京: 中囯原子能出版社,2016.
|
[4] |
International Atomic Energy Agency. Decommissioning of nuclear power plants, research reactors and other nuclear fuel cycle facilities: IAEA Safety Standards Series No. SSG-47[R]. Vienna: IAEA, 2018.
|
[5] |
张永领,赵菀,章航洲,等. 基于层次分析法的核设施退役方案量化评价方法研究[J]. 核动力工程,2018, 39(3): 143-146.
|
[6] |
Organisation for Economic Co-operation and Development. Costs of decommissioning nuclear power plants: NEA No. 7201[R]. Paris: OECD, 2016.
|
[7] |
刘建琴,安鸿翔,董毅漫,等. 中国民用核设施退役基金研究[J]. 环境科学与管理,2017, 42(3): 20-25.
|
[8] |
International Atomic Energy Agency. Safe enclosure of nuclear facilities during deferred dismantling: Safety Reports Series No. 26[R]. Vienna: IAEA, 2002.
|
[9] |
International Atomic Energy Agency. Lessons learned from the deferred dismantling of nuclear facilities: IAEA Nuclear Energy Series No. NW-T-2.11[R]. Vienna: IAEA, 2018.
|
[10] |
ZHANG Y L, ZHAO W, WANG S. Study of laser 3D scanning model reconstruction for nuclear facilities decommissioning[C]. Paris: Proceedings of 2020 International Conference on Nuclear Engineering Collocated with the ASME 2020 Power Conference, 2020.
|
[11] |
王邵,刘坤贤,张天祥. 核设施退役工程[M]. 北京: 中国原子能出版社,2013: 44,134.
|
[12] |
吴杰,张生栋,刘刈,等. CIAE核设施退役技术研究现状及展望[J]. 原子能科学技术,2020, 54(S1): 143-150.
|
[13] |
许非,李垚,章航洲,等. HFETR考验回路沉积源项精细计算研究[J]. 核动力工程,2023, 44(S2): 188-192.
|
[14] |
郭雨非,章航洲,刘水清,等. 基于蒙卡-点核积分耦合的核电厂退役辐射场计算[J]. 辐射防护,2021, 41(5): 459-466.
|
[15] |
International Atomic Energy Agency. Decontamination methodologies and approaches: IAEA Nuclear Energy Series No. NW-T-1.38[R]. Vienna: IAEA, 2023.
|
[16] |
孙志军,刘金龙,彭真臻,等. 多相态二氧化碳复合去污系统设计[J]. 装备制造技术,2023(4): 45-48.
|
[17] |
周道辉,苏冬萍,王孝强,等. 聚乙烯醇基可剥离膜去除不锈钢表面放射性污染的研究[J]. 原子能科学技术,2021, 55(9): 1650-1655. doi: 10.7538/yzk.2020.youxian.0699
|
[18] |
苏冬萍,王孝强,梁帮宏,等. 用于热室内可剥离膜去污的剥膜工装及工艺: 中国,111554427A[P]. 2020-08-18.
|
[19] |
管海洋,陈健菠,王小平,等. 泡沫去污技术在反应堆水池去污中的应用[J]. 辐射防护通讯,2018, 38(1): 19-23. doi: 10.3969/j.issn.1004-6356.2018.01.005
|
[20] |
VASILYEV A P, LEBEDEV N M, SAVKIN A E, et al. Experimental tests of ultrasonic decontamination of metal radioactive waste-9012[C]. Phoenix: Proceedings of WM2009 Conference, 2009.
|
[21] |
STEIFENSAND M K, PRIESMEYER U, STEINER H, et al. A new technology for decontamination of outer surfaces of BWR condenser tubes[C]. Tucson: Proceedings of WM’05 Conference, 2005.
|
[22] |
鲁芸芸,曹骐,陈云明,等. 针对不锈钢表面60Co污染的电化学去污研究[J]. 核动力工程,2021, 42(6): 237-243.
|
[23] |
PUJOL POZO A A, BUSTOS E B, MONROY-GUZMÁN F, et al. Decontamination of radioactive metal surfaces by electrocoagulation[J]. Journal of Hazardous Materials, 2019, 361: 357-366. doi: 10.1016/j.jhazmat.2018.08.061
|
[24] |
张怡,郑佐西,朱欣研,等. 在线悬浮电解去污电化学性能和去污效果[J]. 核化学与放射化学,2018, 40(4): 243-249.
|
[25] |
KAHL T, GREIFZU G, HERRMANN M, et al. Particle release during laser decontamination of concrete surfaces[C]//Proceedings of the 2018 26th International Conference on Nuclear Engineering. London: ICONE, 2018.
|
[26] |
赵菀,曹俊杰,王帅,等. 放射性表面污染金属废物激光去污工艺研究[J]. 核动力工程,2021, 42(5): 250-255.
|
[27] |
WHITE T L, FOSTER D JR, WILSON C T, et al. Phase 2 microwave concrete decontamination results: AC05-84OR21400[R]. Washington: USDOE, 1995.
|
[28] |
TANAKA M, TAKEO M, HIRABAYASHI T, et al. Decommissioning programs and technology development in Japan atomic energy research institute[C]. Paris: Proceedings of WM'99 Conference, 1999.
|
[29] |
NAKAMURA Y, MORISHITA Y, MARUYAMA S, et al. Assessment of the applicability of the abrasive water jet technique for dismantling the reactor of FUGEN: studies for reducing the usage of abrasive and for surveying the cutting situation under the water[C]//Proceedings of the 16th International Conference on Nuclear Engineering. Orlando: ICONE, 2008.
|
[30] |
DEMEULEMEESTER Y, KLEIN M, DADOUMONT J, et al. The dismantling of the vessel from the Belgian BR3 PWR test reactor[C]. Tucson: Proceedings of WM’01 Conference, 2001.
|
[31] |
DEMANT W, PRECHTL E. Dismantling and segmentation of the RPV and internals of the research reactor MZFR Karlsruhe, Germany[C]. New Orleans: Proceedings of WM'99 Conference, 1999.
|
[32] |
张峰,潘广炜,赵颜红,等. 核设施退役用层流等离子体切割解体装置的研制及应用[J]. 核聚变与等离子体物理,2023, 43(2): 145-149.
|
[33] |
滕磊,戴波,张良,等. 一种超高压超临界二氧化碳流载干冰切割装置及方法: 中国,109986318A[P]. 2019-07-09.
|
[34] |
崔鑫,赵胜磊. 放射性废液热泵蒸发装置去污效率研究[J]. 科技风,2019(5): 157.
|
[35] |
孙圣权,章航洲,张劲松,等. 基于柔性组合工艺的放射性废液处理技术研究与设计[J]. 四川环境,2022, 41(3): 212-216.
|
[36] |
骆枫,吴光辉,范继珩,等. 放射性高盐废液干燥成盐技术研究[J]. 同位素,2023, 36(1): 29-34.
|
[37] |
林力,章航洲,李文钰,等. 基于吉布斯自由能最小原理的废树脂蒸汽重整平衡产物分析[J]. 四川环境,2020, 39(5): 170-174.
|
[38] |
顾文露,林力,梁毅,等. 放射性废油蒸汽重整尾气分析方法研究[J]. 同位素,2023, 36(1): 15-19.
|
[39] |
林力,章航洲,李文钰,等. 基于流体体积模型的放射性废树脂蒸汽重整流态化数值模拟分析[J]. 科学技术与工程,2020, 20(30): 12657-12663.
|
[40] |
郑博文,徐卫,杨丽莉,等. 低放废物焚烧装置烟气净化系统设计改进及验证[J]. 辐射防护,2014, 34(4): 206-213.
|
[41] |
骆枫,李振臣,曾国强,等. 放射性污染土壤分拣减容装置研发[J]. 核动力工程,2022, 43(4): 178-184.
|
[42] |
徐国庆,王登辉,苏明,等. 极低水平放射性废物测量系统模拟设计[J]. 核电子学与探测技术,2020, 40(2): 216-223.
|
[43] |
郑洪龙,庹先国,苟家元,等. 基于蒙卡模拟的分段γ扫描无源效率刻度方法[J]. 强激光与粒子束,2020, 32(4): 046002.
|
[44] |
经济合作与发展组织. 核设施退役研发与创新需求[M]. 北京: 中国原子能出版社,2022: 155-156.
|
[45] |
罗上庚,张振涛,张华. 核设施与辐射设施的退役[M]. 北京: 中国环境科学出版社,2010: 154-156.
|
[46] |
IGUCHI Y, KANEHIRA Y, TACHIBANA M, et al. Development of decommissioning engineering support system (DEXUS) of the fugen nuclear power station[J]. Journal of Nuclear Science and Technology, 2004, 41(3): 367-375. doi: 10.1080/18811248.2004.9715497
|
[47] |
SIMONIS A, POSKAS P, POSKAS G, et al. Modeling of the radiation doses during dismantling of RBMK-1500 reactor emergency core cooling system large diameter pipes[J]. Annals of Nuclear Energy, 2015, 85: 159-165. doi: 10.1016/j.anucene.2015.04.034
|
[48] |
JEONG K S, CHOI B S, MOON J K, et al. Risk assessment on abnormal accidents from human errors during decommissioning of nuclear facilities[J]. Annals of Nuclear Energy, 2016, 87: 1-6.
|
[49] |
HYUN D, KIM I, LEE J, et al. A methodology to simulate the cutting process for a nuclear dismantling simulation based on a digital manufacturing platform[J]. Annals of Nuclear Energy, 2017, 103: 369-383. doi: 10.1016/j.anucene.2017.01.035
|
[50] |
张永领,胡一非,刘猛,等. 反应堆退役三维辐射场实时计算及可视化[J]. 辐射防护,2018, 38(1): 19-25.
|
[51] |
晁楠. 基于虚拟现实的核设施退役辐射剂量评估方法研究[D]. 哈尔滨: 哈尔滨工程大学,2019.
|
[52] |
宋英明,梁烨,叶凯萱,等. 核设施退役过程中的辐射场重构与拆除路径优化[J]. 核技术,2017, 40(5): 050502.
|
[53] |
徐文福,毛志刚. 核电站机器人研究现状与发展趋势[J]. 机器人,2011, 33(6): 758-767.
|
[54] |
BOGUE R. Robots in the nuclear industry: a review of technologies and applications[J]. Industrial Robot, 2011, 38(2): 113-118. doi: 10.1108/01439911111106327
|
[55] |
胡梦岩,孔繁丽,余大利,等. 数字孪生在先进核能领域中的关键技术与应用前瞻[J]. 电网技术,2021, 45(7): 2514-2522.
|
[56] |
冯常,王从政,赵建平,等. 核环境作业机器人研究现状及关键技术分析[J]. 光电工程,2020, 47(10): 200338.
|
[57] |
陈少南,邓志燕,刘帅. 核辐射复杂环境下新型智能拆解机器人系统设计研究[J]. 机器人技术与应用,2021(6): 23-28.
|
微信图片_20240617174919.jpg |