Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Zhang Hangzhou, Cao Junjie, Zhang Yongling, Sun Zhijun, Hu Dongmei, Lin Li, Wu Yao, Du Defu, Wang Shuai, Chen Xisan. Status and Prospect of Reactor Decommissioning Technology[J]. Nuclear Power Engineering, 2024, 45(3): 1-13. doi: 10.13832/j.jnpe.2024.03.0001
Citation: Zhang Hangzhou, Cao Junjie, Zhang Yongling, Sun Zhijun, Hu Dongmei, Lin Li, Wu Yao, Du Defu, Wang Shuai, Chen Xisan. Status and Prospect of Reactor Decommissioning Technology[J]. Nuclear Power Engineering, 2024, 45(3): 1-13. doi: 10.13832/j.jnpe.2024.03.0001

Status and Prospect of Reactor Decommissioning Technology

doi: 10.13832/j.jnpe.2024.03.0001
  • Received Date: 2024-01-18
  • Rev Recd Date: 2024-04-08
  • Publish Date: 2024-06-13
  • Reactor decommissioning is one of the nuclear facility decommissioning work that needs to be focused on. In this paper, the overall situation of global reactor decommissioning is analyzed. The concept of decommissioning technology in a broad sense is put forward, and a reactor decommissioning technology system consisting of decommissioning management and overall technology, decommissioning special technology and common support technology is constructed. The policies, regulations and standards, technical route, project management and other decommissioning management and overall technology are discussed. The special decommissioning technologies such as safe shutdown, characteristic investigation, decontamination, cutting and dismantling, waste management and final decommissioning management are analyzed. The common supporting technologies such as digitization and intellectualization, radiation protection and monitoring are discussed. After comprehensive analysis and demonstration, the development direction of specific decommissioning technology and the development trend of reactor decommissioning technology in the future are prospected.

     

  • loading
  • [1]
    International Atomic Energy Agency. Global status of decommissioning of nuclear installations: IAEA Nuclear Energy Series No. NW-T-2.16[R]. Vienna: IAEA, 2023.
    [2]
    张生栋. 核设施退役与放射性废物治理关键技术[M]. 北京: 中国原子能出版社,2021: 17.
    [3]
    曹俊杰,赵菀,王用超,等. 核电厂退役策略研究及建议[C]//中囯核学会. 中国核科学技术进展报告(第四卷)——中国核学会2015年学术年会论文集第8册(同位素分卷、辐射研究与应用分卷、核技术工业应用分卷、核农学分卷、核医学分卷、核情报分卷). 北京: 中囯原子能出版社,2016.
    [4]
    International Atomic Energy Agency. Decommissioning of nuclear power plants, research reactors and other nuclear fuel cycle facilities: IAEA Safety Standards Series No. SSG-47[R]. Vienna: IAEA, 2018.
    [5]
    张永领,赵菀,章航洲,等. 基于层次分析法的核设施退役方案量化评价方法研究[J]. 核动力工程,2018, 39(3): 143-146.
    [6]
    Organisation for Economic Co-operation and Development. Costs of decommissioning nuclear power plants: NEA No. 7201[R]. Paris: OECD, 2016.
    [7]
    刘建琴,安鸿翔,董毅漫,等. 中国民用核设施退役基金研究[J]. 环境科学与管理,2017, 42(3): 20-25.
    [8]
    International Atomic Energy Agency. Safe enclosure of nuclear facilities during deferred dismantling: Safety Reports Series No. 26[R]. Vienna: IAEA, 2002.
    [9]
    International Atomic Energy Agency. Lessons learned from the deferred dismantling of nuclear facilities: IAEA Nuclear Energy Series No. NW-T-2.11[R]. Vienna: IAEA, 2018.
    [10]
    ZHANG Y L, ZHAO W, WANG S. Study of laser 3D scanning model reconstruction for nuclear facilities decommissioning[C]. Paris: Proceedings of 2020 International Conference on Nuclear Engineering Collocated with the ASME 2020 Power Conference, 2020.
    [11]
    王邵,刘坤贤,张天祥. 核设施退役工程[M]. 北京: 中国原子能出版社,2013: 44,134.
    [12]
    吴杰,张生栋,刘刈,等. CIAE核设施退役技术研究现状及展望[J]. 原子能科学技术,2020, 54(S1): 143-150.
    [13]
    许非,李垚,章航洲,等. HFETR考验回路沉积源项精细计算研究[J]. 核动力工程,2023, 44(S2): 188-192.
    [14]
    郭雨非,章航洲,刘水清,等. 基于蒙卡-点核积分耦合的核电厂退役辐射场计算[J]. 辐射防护,2021, 41(5): 459-466.
    [15]
    International Atomic Energy Agency. Decontamination methodologies and approaches: IAEA Nuclear Energy Series No. NW-T-1.38[R]. Vienna: IAEA, 2023.
    [16]
    孙志军,刘金龙,彭真臻,等. 多相态二氧化碳复合去污系统设计[J]. 装备制造技术,2023(4): 45-48.
    [17]
    周道辉,苏冬萍,王孝强,等. 聚乙烯醇基可剥离膜去除不锈钢表面放射性污染的研究[J]. 原子能科学技术,2021, 55(9): 1650-1655. doi: 10.7538/yzk.2020.youxian.0699
    [18]
    苏冬萍,王孝强,梁帮宏,等. 用于热室内可剥离膜去污的剥膜工装及工艺: 中国,111554427A[P]. 2020-08-18.
    [19]
    管海洋,陈健菠,王小平,等. 泡沫去污技术在反应堆水池去污中的应用[J]. 辐射防护通讯,2018, 38(1): 19-23. doi: 10.3969/j.issn.1004-6356.2018.01.005
    [20]
    VASILYEV A P, LEBEDEV N M, SAVKIN A E, et al. Experimental tests of ultrasonic decontamination of metal radioactive waste-9012[C]. Phoenix: Proceedings of WM2009 Conference, 2009.
    [21]
    STEIFENSAND M K, PRIESMEYER U, STEINER H, et al. A new technology for decontamination of outer surfaces of BWR condenser tubes[C]. Tucson: Proceedings of WM’05 Conference, 2005.
    [22]
    鲁芸芸,曹骐,陈云明,等. 针对不锈钢表面60Co污染的电化学去污研究[J]. 核动力工程,2021, 42(6): 237-243.
    [23]
    PUJOL POZO A A, BUSTOS E B, MONROY-GUZMÁN F, et al. Decontamination of radioactive metal surfaces by electrocoagulation[J]. Journal of Hazardous Materials, 2019, 361: 357-366. doi: 10.1016/j.jhazmat.2018.08.061
    [24]
    张怡,郑佐西,朱欣研,等. 在线悬浮电解去污电化学性能和去污效果[J]. 核化学与放射化学,2018, 40(4): 243-249.
    [25]
    KAHL T, GREIFZU G, HERRMANN M, et al. Particle release during laser decontamination of concrete surfaces[C]//Proceedings of the 2018 26th International Conference on Nuclear Engineering. London: ICONE, 2018.
    [26]
    赵菀,曹俊杰,王帅,等. 放射性表面污染金属废物激光去污工艺研究[J]. 核动力工程,2021, 42(5): 250-255.
    [27]
    WHITE T L, FOSTER D JR, WILSON C T, et al. Phase 2 microwave concrete decontamination results: AC05-84OR21400[R]. Washington: USDOE, 1995.
    [28]
    TANAKA M, TAKEO M, HIRABAYASHI T, et al. Decommissioning programs and technology development in Japan atomic energy research institute[C]. Paris: Proceedings of WM'99 Conference, 1999.
    [29]
    NAKAMURA Y, MORISHITA Y, MARUYAMA S, et al. Assessment of the applicability of the abrasive water jet technique for dismantling the reactor of FUGEN: studies for reducing the usage of abrasive and for surveying the cutting situation under the water[C]//Proceedings of the 16th International Conference on Nuclear Engineering. Orlando: ICONE, 2008.
    [30]
    DEMEULEMEESTER Y, KLEIN M, DADOUMONT J, et al. The dismantling of the vessel from the Belgian BR3 PWR test reactor[C]. Tucson: Proceedings of WM’01 Conference, 2001.
    [31]
    DEMANT W, PRECHTL E. Dismantling and segmentation of the RPV and internals of the research reactor MZFR Karlsruhe, Germany[C]. New Orleans: Proceedings of WM'99 Conference, 1999.
    [32]
    张峰,潘广炜,赵颜红,等. 核设施退役用层流等离子体切割解体装置的研制及应用[J]. 核聚变与等离子体物理,2023, 43(2): 145-149.
    [33]
    滕磊,戴波,张良,等. 一种超高压超临界二氧化碳流载干冰切割装置及方法: 中国,109986318A[P]. 2019-07-09.
    [34]
    崔鑫,赵胜磊. 放射性废液热泵蒸发装置去污效率研究[J]. 科技风,2019(5): 157.
    [35]
    孙圣权,章航洲,张劲松,等. 基于柔性组合工艺的放射性废液处理技术研究与设计[J]. 四川环境,2022, 41(3): 212-216.
    [36]
    骆枫,吴光辉,范继珩,等. 放射性高盐废液干燥成盐技术研究[J]. 同位素,2023, 36(1): 29-34.
    [37]
    林力,章航洲,李文钰,等. 基于吉布斯自由能最小原理的废树脂蒸汽重整平衡产物分析[J]. 四川环境,2020, 39(5): 170-174.
    [38]
    顾文露,林力,梁毅,等. 放射性废油蒸汽重整尾气分析方法研究[J]. 同位素,2023, 36(1): 15-19.
    [39]
    林力,章航洲,李文钰,等. 基于流体体积模型的放射性废树脂蒸汽重整流态化数值模拟分析[J]. 科学技术与工程,2020, 20(30): 12657-12663.
    [40]
    郑博文,徐卫,杨丽莉,等. 低放废物焚烧装置烟气净化系统设计改进及验证[J]. 辐射防护,2014, 34(4): 206-213.
    [41]
    骆枫,李振臣,曾国强,等. 放射性污染土壤分拣减容装置研发[J]. 核动力工程,2022, 43(4): 178-184.
    [42]
    徐国庆,王登辉,苏明,等. 极低水平放射性废物测量系统模拟设计[J]. 核电子学与探测技术,2020, 40(2): 216-223.
    [43]
    郑洪龙,庹先国,苟家元,等. 基于蒙卡模拟的分段γ扫描无源效率刻度方法[J]. 强激光与粒子束,2020, 32(4): 046002.
    [44]
    经济合作与发展组织. 核设施退役研发与创新需求[M]. 北京: 中国原子能出版社,2022: 155-156.
    [45]
    罗上庚,张振涛,张华. 核设施与辐射设施的退役[M]. 北京: 中国环境科学出版社,2010: 154-156.
    [46]
    IGUCHI Y, KANEHIRA Y, TACHIBANA M, et al. Development of decommissioning engineering support system (DEXUS) of the fugen nuclear power station[J]. Journal of Nuclear Science and Technology, 2004, 41(3): 367-375. doi: 10.1080/18811248.2004.9715497
    [47]
    SIMONIS A, POSKAS P, POSKAS G, et al. Modeling of the radiation doses during dismantling of RBMK-1500 reactor emergency core cooling system large diameter pipes[J]. Annals of Nuclear Energy, 2015, 85: 159-165. doi: 10.1016/j.anucene.2015.04.034
    [48]
    JEONG K S, CHOI B S, MOON J K, et al. Risk assessment on abnormal accidents from human errors during decommissioning of nuclear facilities[J]. Annals of Nuclear Energy, 2016, 87: 1-6.
    [49]
    HYUN D, KIM I, LEE J, et al. A methodology to simulate the cutting process for a nuclear dismantling simulation based on a digital manufacturing platform[J]. Annals of Nuclear Energy, 2017, 103: 369-383. doi: 10.1016/j.anucene.2017.01.035
    [50]
    张永领,胡一非,刘猛,等. 反应堆退役三维辐射场实时计算及可视化[J]. 辐射防护,2018, 38(1): 19-25.
    [51]
    晁楠. 基于虚拟现实的核设施退役辐射剂量评估方法研究[D]. 哈尔滨: 哈尔滨工程大学,2019.
    [52]
    宋英明,梁烨,叶凯萱,等. 核设施退役过程中的辐射场重构与拆除路径优化[J]. 核技术,2017, 40(5): 050502.
    [53]
    徐文福,毛志刚. 核电站机器人研究现状与发展趋势[J]. 机器人,2011, 33(6): 758-767.
    [54]
    BOGUE R. Robots in the nuclear industry: a review of technologies and applications[J]. Industrial Robot, 2011, 38(2): 113-118. doi: 10.1108/01439911111106327
    [55]
    胡梦岩,孔繁丽,余大利,等. 数字孪生在先进核能领域中的关键技术与应用前瞻[J]. 电网技术,2021, 45(7): 2514-2522.
    [56]
    冯常,王从政,赵建平,等. 核环境作业机器人研究现状及关键技术分析[J]. 光电工程,2020, 47(10): 200338.
    [57]
    陈少南,邓志燕,刘帅. 核辐射复杂环境下新型智能拆解机器人系统设计研究[J]. 机器人技术与应用,2021(6): 23-28.
  • 微信图片_20240617174919.jpg
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (106) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return