Advance Search
Volume 45 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
Zhang Xiuchun, Xia Hong, Liu Yongkang, Zhu Shaomin, Liu Jie, Zhang Jiyu. Fault Detection for Reactor Coolant Pump Based on Moving Window Kernel Principal Component Analysis[J]. Nuclear Power Engineering, 2024, 45(3): 234-240. doi: 10.13832/j.jnpe.2024.03.0234
Citation: Zhang Xiuchun, Xia Hong, Liu Yongkang, Zhu Shaomin, Liu Jie, Zhang Jiyu. Fault Detection for Reactor Coolant Pump Based on Moving Window Kernel Principal Component Analysis[J]. Nuclear Power Engineering, 2024, 45(3): 234-240. doi: 10.13832/j.jnpe.2024.03.0234

Fault Detection for Reactor Coolant Pump Based on Moving Window Kernel Principal Component Analysis

doi: 10.13832/j.jnpe.2024.03.0234
  • Received Date: 2023-06-28
  • Rev Recd Date: 2024-03-15
  • Publish Date: 2024-06-13
  • Due to the influence of component performance decline and operation condition change, nuclear power plants (NPPs) show obvious time variability during operation, which leads to the failure of fault detection model. In order to improve the performance and in-service adaptability of traditional fault detection methods in time-varying industrial processes, this paper proposes a long-term fault detection strategy for NPPs based on kernel principal component analysis (KPCA) and moving window. In this method, the KPCA fault detection model is automatically updated by moving window technology, which solves the time-varying problem of signals in the detection process. The moving window KPCA method is applied to the long-term monitoring of the reactor coolant pump in a nuclear power plant. The results show that the moving window KPCA method has good performance in fault detection rate and false alarm rate under normal and abnormal conditions.

     

  • loading
  • [1]
    HASHEMIAN H M. On-line monitoring applications in nuclear power plants[J]. Progress in Nuclear Energy, 2011, 53(2): 167-181. doi: 10.1016/j.pnucene.2010.08.003
    [2]
    HUSSAIN M, DHIMISH M, TITARENKO S, et al. Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters[J]. Renewable Energy, 2020, 155: 1272-1292. doi: 10.1016/j.renene.2020.04.023
    [3]
    彭彬森,夏虹,朱少民,等. 核动力装置运行数据的特征提取方法研究[J]. 原子能科学技术,2020, 54(3): 488-495. doi: 10.7538/yzk.2019.youxian.0229
    [4]
    孙英杰,彭敏俊. 基于MSET和SPRT的核动力装置异常状态监测技术研究[J]. 核动力工程,2015, 36(3): 57-61.
    [5]
    BARALDI P, DI MAIO F, TURATI P, et al. Robust signal reconstruction for condition monitoring of industrial components via a modified Auto Associative Kernel Regression method[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 29-44. doi: 10.1016/j.ymssp.2014.09.013
    [6]
    朱少民,夏虹,彭彬森,等. 基于PCA的主泵传感器状态监测模型[J]. 核动力工程,2020, 41(3): 170-176.
    [7]
    BARALDI P, CAMMI A, MANGILI F, et al. An ensemble approach to sensor fault detection and signal reconstruction for nuclear system control[J]. Annals of Nuclear Energy, 2010, 37(6): 778-790. doi: 10.1016/j.anucene.2010.03.002
    [8]
    李伟,彭敏俊,刘永阔. 基于PCA的核电站传感器状态监测方法研究[J]. 核动力工程,2018, 39(1): 136-139.
    [9]
    SCHÖLKOPF B, SMOLA A, MÜLLER K R. Kernel principal component analysis[C]//Proceedings of the 7th International Conference on Artificial Neural Networks. Lausanne: Springer, 1997: 583-588.
    [10]
    吴天昊,刘韬,施海宁,等. 基于核主元分析法的核电厂设备状态监测技术研究[J]. 核动力工程,2020, 41(5): 132-137.
    [11]
    WANG H, PENG M J, YU Y, et al. Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants[J]. Annals of Nuclear Energy, 2021, 150: 107786. doi: 10.1016/j.anucene.2020.107786
    [12]
    NAVI M, MESKIN N, DAVOODI M. Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA[J]. Journal of Process Control, 2018, 64: 37-48. doi: 10.1016/j.jprocont.2018.02.002
    [13]
    DENG X G, TIAN X M. A new fault isolation method based on unified contribution plots[C]//Proceedings of the 30th Chinese Control Conference. Yantai: IEEE, 2011: 4280-4285.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (92) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return