Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Sun Qizheng, Liu Xiaojing, Zhang Tengfei. Application of Unstructured Mesh Variational Nodal Method in He-Xe Cooled Micro Reactor[J]. Nuclear Power Engineering, 2024, 45(5): 26-31. doi: 10.13832/j.jnpe.2024.05.0026
Citation: Sun Qizheng, Liu Xiaojing, Zhang Tengfei. Application of Unstructured Mesh Variational Nodal Method in He-Xe Cooled Micro Reactor[J]. Nuclear Power Engineering, 2024, 45(5): 26-31. doi: 10.13832/j.jnpe.2024.05.0026

Application of Unstructured Mesh Variational Nodal Method in He-Xe Cooled Micro Reactor

doi: 10.13832/j.jnpe.2024.05.0026
  • Received Date: 2023-10-30
  • Rev Recd Date: 2024-01-13
  • Publish Date: 2024-10-14
  • Advanced designs of micro reactors are distinguished by intricate geometries and pronounced neutron leakage. To enhance the precision of neutron property analysis in these complex geometrical designs, this study introduces an Unstructured Mesh Variational Nodal Method (UVNM-SN). The UVNM-SN method initiates from the functional formulation of the second-order even-parity neutron transport equation. Spatially, arbitrary triangular unstructured meshes and coordinate mapping techniques are employed. Besides, angular decoupling of the original equations is achieved through the application of the discrete-ordinate (SN) method. Furthermore, the SIMONS design, a helium-xenon (He-Xe)-cooled micro reactor, is chosen as the analytical subject to verify the performance of the UVNM-SN. Numerical results demonstrate that UVNM-SN exhibits geometric adaptability and computational precision in heterogeneous problems with complex geometries. Consequently, it is concluded that UVNM-SN can stand as an innovative strategy for numerical simulations in advanced micro-reactor designs.

     

  • loading
  • [1]
    STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls: Idaho National Laboratory, 2017.
    [2]
    XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
    [3]
    EKLUND M D, DUPONT M, CARACAPPA P F, et al. Neutronics simulations of the RPI Walthousen Reactor Critical Facility (RCF) using Proteus-SN[J]. Transactions of the American nuclear society, 2017, 117: 114-115.
    [4]
    WANG Y Q, SCHUNERT S, ORTENSI J, et al. Rattlesnake: a MOOSE-based multiphysics multischeme radiation transport application[J]. Nuclear Technology, 2021, 207(7): 1047-1072. doi: 10.1080/00295450.2020.1843348
    [5]
    FIORINA C, HURSIN M, PAUTZ A. Extension of the GeN-Foam neutronic solver to SP3 analysis and application to the CROCUS experimental reactor[J]. Annals of Nuclear Energy, 2017, 101: 419-428. doi: 10.1016/j.anucene.2016.11.042
    [6]
    JARETEG K, VINAI P, SASIC S, et al. Coupled fine-mesh neutronics and thermal-hydraulics – modeling and implementation for PWR fuel assemblies[J]. Annals of Nuclear Energy, 2015, 84: 244-257. doi: 10.1016/j.anucene.2015.01.037
    [7]
    WANG J P, MARTIN W R, DOWNAR T J, et al. Code verification and solution verification framework in pin-resolved neutron transport code MPACT[J]. Annals of Nuclear Energy, 2022, 178: 109365. doi: 10.1016/j.anucene.2022.109365
    [8]
    HSIEH A, ZHANG G C, YANG W S. Consistent transport transient solvers of the high-fidelity transport code PROTEUS-MOC[J]. Nuclear Science and Engineering, 2020, 194(7): 508-540. doi: 10.1080/00295639.2020.1746619
    [9]
    CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [10]
    ZHAO C, PENG X J, ZHANG H B, et al. A new numerical nuclear reactor neutronics code SHARK[J]. Frontiers in Energy Research, 2021, 9: 784247. doi: 10.3389/fenrg.2021.784247
    [11]
    ZHANG T F, LI Z P. Variational nodal methods for neutron transport: 40 years in review[J]. Nuclear Engineering and Technology, 2022, 54(9): 3181-3204. doi: 10.1016/j.net.2022.04.012
    [12]
    SMITH M A, TSOULFANIDIS N, LEWIS E E, et al. A finite subelement generalization of the variational nodal method[J]. Nuclear Science and Engineering, 2003, 144(1): 36-46. doi: 10.13182/NSE144-36
    [13]
    ZHANG T F, WANG Y P, LEWIS E E, et al. A three-dimensional variational nodal method for pin-resolved neutron transport analysis of pressurized water reactors[J]. Nuclear Science and Engineering, 2017, 188(2): 160-174. doi: 10.1080/00295639.2017.1350002
    [14]
    ZHANG T F, LEWIS E E, SMITH M A, et al. A variational nodal approach to 2D/1D pin resolved neutron transport for pressurized water reactors[J]. Nuclear Science and Engineering, 2017, 186(2): 120-133. doi: 10.1080/00295639.2016.1273023
    [15]
    WANG Y Q, RABITI C, PALMIOTTI G. Krylov solvers preconditioned with the low-order red-black algorithm for the PN hybrid FEM for the INSTANT code[C]//Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011). Rio de Janeiro, RJ, Brazil: CD-ROM, Latin American Section (LAS), American Nuclear Society (ANS), 2011.
    [16]
    LI X Y, LIU X J, CHAI X, et al. Multi-physics coupling simulation of small mobile nuclear reactor with finite element-based models[J]. Computer Physics Communications, 2023, 293: 108900. doi: 10.1016/j.cpc.2023.108900
    [17]
    ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
    [18]
    GEUZAINE C, REMACLE J F. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331. doi: 10.1002/nme.2579
    [19]
    SUN Q Z, XIAO W, LI X Y, et al. A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems[J]. Nuclear Engineering and Technology, 2023, 55(6): 2172-2194. doi: 10.1016/j.net.2023.02.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (30) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return