Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Zhang Cheng, Wan Chenghui. Study on Treatment Method of Environmental Effect of Hexagonal Assembly PWR[J]. Nuclear Power Engineering, 2024, 45(5): 45-52. doi: 10.13832/j.jnpe.2024.05.0045
Citation: Zhang Cheng, Wan Chenghui. Study on Treatment Method of Environmental Effect of Hexagonal Assembly PWR[J]. Nuclear Power Engineering, 2024, 45(5): 45-52. doi: 10.13832/j.jnpe.2024.05.0045

Study on Treatment Method of Environmental Effect of Hexagonal Assembly PWR

doi: 10.13832/j.jnpe.2024.05.0045
  • Received Date: 2023-10-30
  • Rev Recd Date: 2024-06-18
  • Publish Date: 2024-10-14
  • An improved multi-assembly homogenization method is raised to deal with the environmental effect of the hexagonal fuel assembly in PWRs. In order to reduce the influence of environmental effect of fuel assembly on the calculation accuracy of two-step method, sensitivity analysis is carried out from the state variable of burnup depth, which expands the practicability of this method. In this method, the real core energy spectrum of the fuel assembly adjacent to the reflector is approximately obtained by establishing a multi-assembly model, and the heterogeneous correction factor is adopted to reduce the deviation of the calculation of few-group constants of the single-assembly model with reflective boundary due to environmental effects. At the same time, the traditional two-step calculation strategy is fine-tuned, which has little impact on the overall code framework. The calculation results show that this method can effectively improve the calculation accuracy of the traditional two-step method, and the eigenvalue deviation is reduced from −341pcm (1pcm=10−5) to −111pcm, and the root mean square deviation of assembly power is also reduced from 2.28% to 1.38%.

     

  • loading
  • [1]
    KOEBKE K. A new approach to homogenization and group condensation[C]//IAEA Technical Comittee Meeting on Homogenization Methods in Reactor Physics. Lugano, 1978.
    [2]
    KOEBKE K. Advances in homogenization and dehomogenization[C]//Proceedings of the International Topical Meeting on Advances in Mathematical Methods for the Solution of Nuclear Engineering Problems. Munich, 1981.
    [3]
    YAMAMOTO T. Monte Carlo method with complex weights for neutron leakage-corrected calculations and anisotropic diffusion coefficient generations[J]. Annals of Nuclear Energy, 2012, 50: 141-149. doi: 10.1016/j.anucene.2012.06.025
    [4]
    汤春桃,黄灏,张少泓. 改进现行轻水堆组件均匀化方法的必要性[J]. 核科学与工程,2007, 27(4): 327-332. doi: 10.3321/j.issn:0258-0918.2007.04.007
    [5]
    李文淮,刘志宏. 组件均匀化中的边界条件误差修正方法研究[J]. 核科学与工程,2011, 31(3): 199-206.
    [6]
    张斌. 压水堆全堆芯Pin-by-pin均匀化计算方法研究[D]. 西安: 西安交通大学,2017.
    [7]
    汤春桃. 中子输运方程特征线解法及嵌入式组件均匀化方法的研究[D]. 上海: 上海交通大学,2009.
    [8]
    SHEN W, ALTIPARMAKOV D. Multicell correction method for treatment of heterogeneities in full-core calculation of CANDU-type Reactors[J]. Nuclear Science and Engineering, 2013, 174(2): 109-134. doi: 10.13182/NSE12-42
    [9]
    BILODID Y, FRIDMAN E, LÖTSCH T. X2 VVER-1000 benchmark revision: Fresh HZP core state and the reference Monte Carlo solution[J]. Annals of Nuclear Energy, 2020, 144: 107558. doi: 10.1016/j.anucene.2020.107558
    [10]
    SMITH K S. Spatial homogenization methods for light water reactor analysis[D]. Cambridge: Massachusetts Institute of Technology, 1980.
    [11]
    TAHARA Y, KANAGAWA T, SEKIMOTO H. Two-dimensional baffle/reflector constants for nodal code in PWR core design[J]. Journal of Nuclear Science and Technology, 2000, 37(11): 986-995. doi: 10.1080/18811248.2000.9714982
    [12]
    MITTAG S, PETKOV P T, GRUNDMANN U. Discontinuity factors for non-multiplying material in two-dimensional hexagonal reactor geometry[J]. Annals of Nuclear Energy, 2003, 30(13): 1347-1364. doi: 10.1016/S0306-4549(03)00070-7
    [13]
    张程. 六角形组件压水堆堆芯物理计算改进方法及其应用[D]. 西安: 西安交通大学,2022.
    [14]
    ZHANG C, WAN C H, CAO L Z, et al. Method research and engineering validation of the improved homogenization for the heavy reflector in VVER[J]. Annals of Nuclear Energy, 2022, 173: 109119. doi: 10.1016/j.anucene.2022.109119
    [15]
    LI Y Z, ZHANG B, HE Q M, et al. Development and verification of PWR-core fuel management calculation code system NECP-Bamboo: Part I Bamboo-Lattice[J]. Nuclear Engineering and Design, 2018, 335: 432-440. doi: 10.1016/j.nucengdes.2018.05.030
    [16]
    YANG W, WU H C, LI Y Z, et al. Development and verification of PWR-core fuel management calculation code system NECP-Bamboo: Part II Bamboo-Core[J]. Nuclear Engineering and Design, 2018, 337: 279-290. doi: 10.1016/j.nucengdes.2018.07.017
    [17]
    HE Q M, ZHENG Q, LI J, et al. NECP-MCX: a hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems[J]. Annals of Nuclear Energy, 2021, 151: 107978. doi: 10.1016/j.anucene.2020.107978
    [18]
    TASHAKOR S, ZARIFI E, NAMINAZARI M. Neutronic simulation of CAREM-25 small modular reactor[J]. Progress in Nuclear Energy, 2017, 99: 185-195. doi: 10.1016/j.pnucene.2017.05.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (26) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return