Advance Search
Volume 45 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
Chen Haoyin, Wang He, Zhao Qiang, Li Lei, Wang Longcong. Analysis of Station Blackout Accident in Nuclear Power Plant Based on Dynamic Event tree[J]. Nuclear Power Engineering, 2024, 45(5): 192-198. doi: 10.13832/j.jnpe.2024.05.0192
Citation: Chen Haoyin, Wang He, Zhao Qiang, Li Lei, Wang Longcong. Analysis of Station Blackout Accident in Nuclear Power Plant Based on Dynamic Event tree[J]. Nuclear Power Engineering, 2024, 45(5): 192-198. doi: 10.13832/j.jnpe.2024.05.0192

Analysis of Station Blackout Accident in Nuclear Power Plant Based on Dynamic Event tree

doi: 10.13832/j.jnpe.2024.05.0192
  • Received Date: 2023-11-16
  • Rev Recd Date: 2024-05-24
  • Publish Date: 2024-10-14
  • Traditional event tree analysis ignores the dynamic time parameters and heavily relies on expert judgement. To tackle these issues, this study utilizes dynamic event tree (DET) method to to establish a response model for station blackout (SBO) accidents of China's improved three-loop PWR (CPR1000) nuclear power plant. Time-dependent branching is established for branch nodes such as turbine-driven auxiliary feedwater system and AC power recovery, and the accident branching results are comprehensively simulated, and the branching probability and the failure probability of core damage under SBO accident are calculated. The calculation results show that different running time of turbine-driven auxiliary feedwater system and recovery time of AC power supply have obvious influence on the accident consequences. The increase of running time of turbine-driven auxiliary feedwater system can prolong the time window of power supply recovery, but there is an upper limit for power supply recovery time, beyond which core damage is inevitable. Compared with the failure probability calculated by the traditional event tree, the dynamic event tree method reduces the failure probability value and develops the potential safety margin.

     

  • loading
  • [1]
    HAKOBYAN A, DENNING R, ALDEMIR T, et al. A methodology for generating dynamic accident progression event trees for level 2 PRA: SAND2008-4746[R]. Albuquerque: Sandia National Laboratories, 2008.
    [2]
    BAEK S, HEO G. Development of dynamic integrated consequence evaluation (DICE) for dynamic event tree approaches: numerical validation for a loss of coolant accident[J]. Reliability Engineering & System Safety, 2023, 238: 109425.
    [3]
    LEE H, KIM T, HEO G. Application of dynamic probabilistic safety assessment approach for accident sequence precursor analysis: case study for steam generator tube rupture[J]. Nuclear Engineering and Technology, 2017, 49(2): 306-312. doi: 10.1016/j.net.2016.12.012
    [4]
    ACOSTA C, SIU N. Dynamic event trees in accident sequence analysis: application to steam generator tube rupture[J]. Reliability Engineering & System Safety, 1993, 41(2): 135-154.
    [5]
    HOFER E, KLOOS M, KRZYKACZ-HAUSMANN B, et al. Dynamic event trees for probabilistic safety analysis[R]. Berlin, Germany: GRS, 2004.
    [6]
    CATALYUREK U, RUTT B, METZROTH K, et al. Development of a code-agnostic computational infrastructure for the dynamic generation of accident progression event trees[J]. Reliability Engineering & System Safety, 2010, 95(3): 278-294.
    [7]
    王朝贵,郭建兵. 大亚湾核电站全厂断电事故及第5台应急柴油机的概率安全评价[J]. 核动力工程,2004, 25(4): 324-327. doi: 10.3969/j.issn.0258-0926.2004.04.009
    [8]
    周克峰,郑继业,冯进军,等. 全厂断电情景下M310核电厂缓解措施分析[J]. 原子能科学技术,2014, 48(8): 1464-1472. doi: 10.7538/yzk.2014.48.08.1464
    [9]
    陈妍,李朝君,张盼,等. 基于离散动态事件树的风险指引的安全裕度分析方法研究[J]. 原子能科学技术,2022, 56(9): 1944-1951. doi: 10.7538/yzk.2022.youxian.0206
    [10]
    CHI L X, SU H, ZIO E, et al. Integrated deterministic and probabilistic safety analysis of integrated energy systems with bi-directional conversion[J]. Energy, 2020, 212: 118685. doi: 10.1016/j.energy.2020.118685
    [11]
    DI MAIO F, RAI A, ZIO E. A dynamic probabilistic safety margin characterization approach in support of integrated deterministic and probabilistic safety analysis[J]. Reliability Engineering & System Safety, 2016, 145: 9-18.
    [12]
    广东核电培训中心. 900MW压水堆核电站系统与设备[M]. 北京: 中国原子能出版社,2005: 48-117.
    [13]
    杨奥,黄志翱,缪惠芳,等. CPR1000全厂断电事故模拟及主泵轴封破口敏感性分析[J]. 厦门大学学报: 自然科学版,2018, 57(5): 629-633.
    [14]
    大亚湾核电培训中心. 大亚湾核电站事故规程解读[M]. 北京: 中国原子能出版社,2007: 172-194.
    [15]
    杜芸,李焕鑫,梁国兴. 基于RISMC方法论的核电厂小幅功率提升风险响应的量化评估[J]. 核科学与工程,2020,40(3): 383-394.
    [16]
    王照,杨建峰,冯丙辰. 基于蒙特卡罗方法事故进程分析的CPR1000全厂断电事故PSA[J]. 原子能科学技术,2020, 54(11): 2098-2106. doi: 10.7538/yzk.2019.youxian.0707
    [17]
    王照,杜欣. “二代加”SBO 事故安全裕度特性研究报告: 913205084669547113--2018YFB1900304/11[R]. 中国: 苏州热工研究院有限公司,2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (56) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return