Advance Search
Volume 45 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Ye Yaoxin, Zhao Jun, Bao Pengfei, Yu Chao, Jiang Pingting. Acceleration Method and Verification of Theoretical Calculation of Irradiation Supervision for Pressurized Water Reactor[J]. Nuclear Power Engineering, 2024, 45(6): 30-38. doi: 10.13832/j.jnpe.2024.06.0030
Citation: Ye Yaoxin, Zhao Jun, Bao Pengfei, Yu Chao, Jiang Pingting. Acceleration Method and Verification of Theoretical Calculation of Irradiation Supervision for Pressurized Water Reactor[J]. Nuclear Power Engineering, 2024, 45(6): 30-38. doi: 10.13832/j.jnpe.2024.06.0030

Acceleration Method and Verification of Theoretical Calculation of Irradiation Supervision for Pressurized Water Reactor

doi: 10.13832/j.jnpe.2024.06.0030
  • Received Date: 2023-12-15
  • Rev Recd Date: 2024-01-22
  • Publish Date: 2024-12-17
  • To address the inefficiency inherent in traditional pressurized water reactor irradiation surveillance theoretical calculation methods, which require multiple physical modeling and particle transport calculations, this study introduces an accelerated approach of neutron fluence calculation for pressure vessel irradiation surveillance capsules. The method is based on the Forward-Weighted Consistent Adjoint-Driven Importance Sampling (FW-CADIS) technique, coupling the Monte Carlo (MC) method with the Discrete Ordinates (SN) method. A comprehensive investigation into the influencing factors of computational accuracy and speed was conducted for a CPR1000 pressurized water reactor, validating the applicability of the proposed method under various core parameters and providing recommended values for SN transport simulation parameters. Verification and validation of the proposed method were performed on a CPR1000 pressurized water reactor. The results show that the Figure of Merit (FOM) of neutron fluence rate calculations is improved by approximately 95 to 181 times compared with the direct MC method, with a relative deviation between the calculated neutron fluence and measured values not exceeding 8%. Consequently, the irradiation surveillance theoretical calculation method presented in this study effectively enhances computational efficiency while meeting the precision requirements for engineering applications.

     

  • loading
  • [1]
    能源行业核电标准化技术委员会. 轻水冷却反应堆压力容器辐照监督: NB/T 20220-2013[S]. 北京: 核工业标准化研究所,2013: 1-25.
    [2]
    张斌,郑君萧,李晓静,等. 反应堆压力容器快中子注量计算不确定性分析[J]. 核技术,2018, 41(2): 020605.
    [3]
    许怀金. RPV快中子注量率计算评估方法研究[D]. 北京: 华北电力大学(北京),2022.
    [4]
    郑君萧. 基于SN方法的反应堆压力容器快中子注量率计算方法研究[D]. 北京: 华北电力大学(北京),2017.
    [5]
    夏春梅,梅其良,丁谦学,等. DORT程序进行RPV中子注量率计算的可靠性验证[J]. 核科学与工程,2016, 36(3): 329-334. doi: 10.3969/j.issn.0258-0918.2016.03.005
    [6]
    VASILIEV A, FERROUKHI H, ZIMMERMANN M A, et al. Development of a CASMO-4/SIMULATE-3/MCNPX calculation scheme for PWR fast neutron fluence analysis and validation against RPV scraping test data[J]. Annals of Nuclear Energy, 2007, 34(8): 615-627. doi: 10.1016/j.anucene.2007.02.020
    [7]
    靳忠敏,陈义学,石生春,等. 基于MCNP的压力容器快中子注量率计算参数敏感性分析[J]. 原子能科学技术,2011, 45(2): 195-199.
    [8]
    石秀安,苏耿华,包鹏飞. 压水堆辐照监督管中子注量计算方法改进研究[J]. 核科学与工程,2018, 38(4): 585-589. doi: 10.3969/j.issn.0258-0918.2018.04.008
    [9]
    邓理邻,吕焕文,谭怡,等. 辐照监督管中子注量率精细化模型计算方法研究[J]. 核动力工程,2013, 34(S1): 84-86.
    [10]
    刘巧凤,韩静茹. CAP1400反应堆压力容器快中子注量独立审核计算[J]. 中国核电,2018, 11(4): 462-465.
    [11]
    TIEP N H, HOANG S M T, HARTANTO D, et al. Investigation of the VVER-1000 reactor pressure vessel neutron fluence and displacement per atom using MCNP6[J]. Radiation Physics and Chemistry, 2020, 177: 109141. doi: 10.1016/j.radphyschem.2020.109141
    [12]
    NGUYEN H T, NHU V H P, NGUYEN M T. Calculation of neutron and gamma fluences on VVER reactor pressure vessel[J]. Nuclear Science and Technology, 2016, 6(4): 18-25. doi: 10.53747/jnst.v6i4.172
    [13]
    ARDEKANI S F G, HADAD K. Monte Carlo evaluation of neutron irradiation damage to the VVER-1000 RPV[J]. Nuclear Energy and Technology, 2017, 3(2): 73-80. doi: 10.1016/j.nucet.2017.04.001
    [14]
    李刚,张宝印,邓力,等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束,2013, 25(1): 158-162.
    [15]
    YANG C, CHENG T P, DENG L, et al. Development of 3-D parallel first-collision source method for discrete ordinate code JSNT-S[J]. Annals of Nuclear Energy, 2020, 135: 106942. doi: 10.1016/j.anucene.2019.106942
    [16]
    邓力,李刚,张宝印,等. JMCT蒙特卡罗中子-光子输运程序全堆芯pin-by-pin模型的模拟[J]. 原子能科学技术,2014, 48(6): 1061-1066. doi: 10.7538/yzk.2014.48.06.1061
    [17]
    邓力,李瑞,丁谦学,等. 基于JMCT秦山核电厂一期反应堆屏蔽计算与分析[J]. 核动力工程,2021, 42(2): 173-179.
    [18]
    李刚,邓力,张宝印,等. BEAVRS基准模型热零功率状态的JMCT分析[J]. 物理学报,2016, 65(5): 052801. doi: 10.7498/aps.65.052801
    [19]
    刘雄国,邓力,胡泽华,等. 基于VENUS-Ⅲ国际基准模型的JMCT程序验证[J]. 计算物理,2016, 33(5): 570-580.
    [20]
    杨超,程汤培,邓力,等. 三维并行程序JSNT对HBR-2装置的屏蔽计算与分析[J]. 原子能科学技术,2019, 53(2): 250-255.
    [21]
    张广春,程汤培,邓力,等. 基于JSNT程序的压水堆屏蔽计算[J]. 强激光与粒子束,2017, 29(3): 036020.
    [22]
    史涛. 蒙特卡罗粒子输运问题中的减方差方法研究[D]. 绵阳: 中国工程物理研究院,2018.
    [23]
    王超,邓力. 基于MCNP多群伴随计算与正算分析的比较[J]. 原子核物理评论,2012, 29(4): 388-394.
    [24]
    WAGNER C J, PEPLOW E D, MOSHER W S. FW-CADIS method for global and regional variance reduction of Monte Carlo radiation transport calculations[J]. Nuclear Science and Engineering, 2014, 176(1): 37-57. doi: 10.13182/NSE12-33
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (28) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return