Citation: | Chen Jiajie, Wang Shiwei, He Hui, Liu Xiaojing, Xiong Jinbiao. Optimization of Oxygen Control Strategy for Corrosion Mitigation in Lead-Bismuth Cooled Fast Reactors[J]. Nuclear Power Engineering, 2024, 45(6): 280-289. doi: 10.13832/j.jnpe.2024.06.0280 |
[1] |
SMITH C F, CINOTTI L. Lead-cooled fast reactors (LFRs)[M]//PIORO I L. Handbook of Generation IV Nuclear Reactors. 2nd ed. Cambridge: Elsevier, 2023: 195-230.
|
[2] |
OECD/NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. Paris: OECD Publishing, 2015: 17-23.
|
[3] |
BALLINGER R G, LIM J. An overview of corrosion issues for the design and operation of high-temperature lead- and lead-bismuth-cooled reactor systems[J]. Nuclear Technology, 2004, 147(3): 418-435. doi: 10.13182/NT04-A3540
|
[4] |
FENG W P, ZHANG X, CAO L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. doi: 10.1016/j.corsci.2021.109708
|
[5] |
KIESER M, MUSCHER H, WEISENBURGER A, et al. Liquid metal corrosion/erosion investigations of structure materials in lead cooled systems: part 1[J]. Journal of Nuclear Materials, 2009, 392(3): 405-412. doi: 10.1016/j.jnucmat.2008.12.327
|
[6] |
KONDO M, MUROGA T, SAGARA A, et al. Flow accelerated corrosion and erosion–corrosion of RAFM steel in liquid breeders[J]. Fusion Engineering and Design, 2011, 86(9-11): 2500-2503. doi: 10.1016/j.fusengdes.2011.01.108
|
[7] |
KONDO M, TAKAHASHI M. Corrosion resistance of Si- and Al-rich steels in flowing lead–bismuth[J]. Journal of Nuclear Materials, 2006, 356(1-3): 203-212. doi: 10.1016/j.jnucmat.2006.05.019
|
[8] |
LI C, LIU Y J, ZHANG F F, et al. Erosion-corrosion of 304N austenitic steels in liquid Pb-Bi flow perpendicular to steel surface[J]. Materials Characterization, 2021, 175: 111054. doi: 10.1016/j.matchar.2021.111054
|
[9] |
LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9
|
[10] |
MARINO A, BUCKINGHAM S, GLADINEZ K, et al. Numerical modeling of iron-based corrosion product oxides mass transport in the MYRRHA reactor during normal operation[J]. Nuclear Engineering and Design, 2018, 338: 199-208. doi: 10.1016/j.nucengdes.2018.08.008
|
[11] |
MARTINELLI L, BALBAUD-CÉLÉRIER F. Modelling of the oxide scale formation on Fe-Cr steel during exposure in liquid lead-bismuth eutectic in the 450-600℃ temperature range[J]. Materials and Corrosion, 2011, 62(6): 531-542. doi: 10.1002/maco.201005871
|
[12] |
MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
|
[13] |
MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
|
[14] |
MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523-2536. doi: 10.1016/j.corsci.2008.06.050
|
[15] |
MARTINELLI L, DUFRENOY T, JAAKOU K, et al. High temperature oxidation of Fe–9Cr–1Mo steel in stagnant liquid lead–bismuth at several temperatures and for different lead contents in the liquid alloy[J]. Journal of Nuclear Materials, 2008, 376(3): 282-288. doi: 10.1016/j.jnucmat.2008.02.006
|
[16] |
MARTINELLI L, GINESTAR K, BOTTON V, et al. Corrosion of T91 and pure iron in flowing and static Pb-Bi alloy between 450℃ and 540℃: experiments, modelling and mechanism[J]. Corrosion Science, 2020, 176: 108897. doi: 10.1016/j.corsci.2020.108897
|
[17] |
SCHROER C, WEDEMEYER O, SKRYPNIK A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead–bismuth eutectic at 450℃[J]. Journal of Nuclear Materials, 2012, 431(1-3): 105-112. doi: 10.1016/j.jnucmat.2011.11.014
|
[18] |
BARBIER F, BENAMATI G, FAZIO C, et al. Compatibility tests of steels in flowing liquid lead–bismuth[J]. Journal of Nuclear Materials, 2001, 295(2-3): 149-156. doi: 10.1016/S0022-3115(01)00570-0
|
[19] |
SCHROER C, VOß Z, WEDEMEYER O, et al. Oxidation of steel T91 in flowing lead–bismuth eutectic (LBE) at 550℃[J]. Journal of Nuclear Materials, 2006, 356(1-3): 189-197. doi: 10.1016/j.jnucmat.2006.05.009
|
[20] |
ZHANG J S, LI N. Analysis on liquid metal corrosion–oxidation interactions[J]. Corrosion Science, 2007, 49(11): 4154-4184. doi: 10.1016/j.corsci.2007.05.012
|
[21] |
BALBAUD-CÉLÉRIER F, BARBIER F. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys[J]. Journal of Nuclear Materials, 2001, 289(3): 227-242. doi: 10.1016/S0022-3115(01)00431-7
|
[22] |
AERTS A, GAVRILOV S, MANFREDI G, et al. Oxygen–iron interaction in liquid lead–bismuth eutectic alloy[J]. Physical Chemistry Chemical Physics, 2016, 18(29): 19526-19530. doi: 10.1039/C6CP01561A
|
[23] |
ZHANG J S, LI N, CHEN Y T, et al. Corrosion behaviors of US steels in flowing lead–bismuth eutectic (LBE)[J]. Journal of Nuclear Materials, 2005, 336(1): 1-10. doi: 10.1016/j.jnucmat.2004.08.002
|
[24] |
ZHANG J, HOSEMANN P, MALOY S. Models of liquid metal corrosion[J]. Journal of Nuclear Materials, 2010, 404(1): 82-96. doi: 10.1016/j.jnucmat.2010.05.024
|
[25] |
SILVERMAN D C. Technical note: on estimating conditions for simulating velocity-sensitive corrosion in the rotating cylinder electrode[J]. Corrosion, 1999, 55(12): 1115-1118. doi: 10.5006/1.3283948
|
[26] |
GU Z X, ZHANG Q X, GU Y, et al. Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor[J]. Nuclear Science and Techniques, 2021, 32(5): 52. doi: 10.1007/s41365-021-00887-x
|
[27] |
LU D S, WANG C, WANG C L, et al. Numerical simulation of corrosion phenomena in oxygen-controlled environment for a horizontal lead-bismuth reactor core[J]. Journal of Nuclear Materials, 2023, 574: 154195. doi: 10.1016/j.jnucmat.2022.154195
|
[28] |
TSISAR V, SCHROER C, WEDEMEYER O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550℃ to flowing Pb-Bi eutectic with 10−7 mass% dissolved oxygen[J]. Journal of Nuclear Materials, 2017, 494: 422-438. doi: 10.1016/j.jnucmat.2017.07.031
|
[29] |
ALEMBERTI A, CARLSSON J, MALAMBU E, et al. European lead fast reactor—ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029
|
[30] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
|